3 FOOT MINIMUM OVERLAP AT ENDS OF BLANKETS. ECB AT HIGHER ELEVATION SHALL OVERLAP ON TOP OF LOWER ECB, OR PER MANUFACTURER LITERATURE.

REFER TO SHEET 2 OF 3 OF THIS DETAIL FOR CHOICE ANCHORING; OR FOLLOW MANUFACTURE RECOMMENDATIONS

4 INCH MINIMUM SIDE OVERLAP OR PER MANUFACTURER’S RECOMMENDATIONS

STAPLES AT MINIMUM 12” SPACING OR PER MANUFACTURE’S RECOMMENDATIONS

FOR SLOPE PROTECTION, NOT CHANNELS

STAPLES (TYP.) 12 INCH ON CENTER AT END OF ECB AT EACH SLOPE CHANGE, AND THROUGHOUT ECB AT SPACING RECOMMENDED BY MANUFACTURER

SHEET FLOW

FIGURE 2.8 STANDARD CONSTRUCTION DETAIL - TEMPORARY EROSION CONTROL BLANKETS (1 OF 3)
ANCHOR TRENCH MAY BE OMITTED ALONG PERIMETER FOR AREAS WITH LESS THAN 2% SLOPE

CONTRACTOR SHALL INSTALL STAPLES AT ALL CRITICAL POINTS

MINIMUM 1 ROW OF STAPLES 12" O.C.

MINIMUM 3' 6" LAYOVER

FINISHED SLOPE FREE OF ROCKS, CLODS, STUMPS OR OBJECTIONAL MATERIAL

FINISHED SLOPE

TOP OF SLOPE ANCHOR TRENCH EXAMPLE 2

3' MIN.

SLOPE > 2%

INSTALL EROSION CONTROL BLANKET PERPENDICULAR TO SLOPE

ANCHOR TRENCH COMPACTED BACK-FILL OR GRAVEL

STAPLE SPACING AS RECOMMENDED BY MANUFACTURER

MIN. OVERLAP

6" MIN.

6"

FIGURE 2.8 STANDARD CONSTRUCTION DETAIL - ANCHOR EXAMPLES FOR TEMPORARY EROSION CONTROL BLANKETS (2 OF 3)
EROSION CONTROL BLANKETS GENERAL NOTES:

2. EROSION CONTROL BLANKET SHALL BE INSTALLED VERTICALLY DOWN SLOPE AS SHOWN.

3. PRIOR TO THE INSTALLATION: ALL ROCKS, DIRT CLODS, STUMPS, ROOTS, TRASH AND ANY OTHER OBSTRUCTIONS THAT WOULD PREVENT THE BLANKET FROM DIRECT CONTACT WITH THE FINISHED SLOPE, SHALL BE REMOVED.

4. ANCHORING METHODS PROVIDED ARE EXAMPLES OF THE TYPE OF ANCHORING THE ECB MANUFACTURER MAY RECOMMEND. ALWAYS FOLLOW THE MANUFACTURER’S RECOMMENDATIONS FOR ANCHORING BASED ON THE SITE-SPECIFIC APPLICATION.

5. INSTALLATION AND ANCHORING SHALL CONFORM TO THE RECOMMENDATIONS SHOWN WITHIN THE MANUFACTURER’S PUBLISHED LITERATURE FOR THE APPROVED EROSION CONTROL BLANKET. PARTICULAR ATTENTION MUST BE PAID TO JOINTS AND OVERLAPPING MATERIAL. AT A MINIMUM, THE END OF EACH ROLL OF ECB SHALL OVERLAP THE NEXT ROLL BY 3 FEET AND THE SIDES OF ROLLS SHALL OVERLAP 4 INCHES.

6. IN ABSENCE OF MANUFACTURER’S LITERATURE, A MINIMUM 11-GUAGE WIRE STAPLES, 6-INCHES IN LENGTH AND 1-INCH WIDTH WILL BE USED.

8. INSPECTION SHALL BE AS SPECIFIED IN THE SWPPP.

FIGURE 2.8 NOTES ON TEMPORARY EROSION CONTROL BLANKETS (3 OF 3)
TURF REINFORCEMENT MATS NOTES:

1. TURF REINFORCEMENT MATS SHALL BE INSTALLED VERTICALLY DOWN SLOPE AS SHOWN.

2. PRIOR TO THE INSTALLATION: ALL ROCKS, DIRT CLODS, STUMPS, ROOTS, TRASH AND ANY OTHER OBSTRUCTIONS THAT WOULD PREVENT THE MAT FROM DIRECT CONTACT WITH THE FINISHED SLOPE, SHALL BE REMOVED.

FIGURE 2.11 SCHEMATICS OF PERMANENT TURF REINFORCEMENT MATS (1 OF 3)
NOTE: LONGITUDINAL INSTALLATION OF TURF REINFORCEMENT MAT PERMITTED ONLY FOR CHANNEL WIDTHS 0' TO 8'. CONTRACTOR SHALL VERIFY MAT MEETS OVERLAP AND SLOPE REQUIREMENTS STATED ABOVE.
FIGURE 2.11 SCHEMATIC OF PERMANENT TURF REINFORCEMENT MATS (3 OF 3)
CONSTRUCTION CONTROLS

* SPECIFIC DESIGN INFORMATION ON THE EROSION CONTROL PLANS IS REQUIRED FOR EACH INSTALLATION

TEMPORARY VELOCITY DISSIPATION DEVICE PLAN VIEW

TEMPORARY VELOCITY DISSIPATION DEVICE PROFILE VIEW

NOTE: DIMENSIONS OF THE RIPRAP APRON SHALL BE DESIGNED BASED ON FLOW CONDITIONS. TEMPORARY CONTROL DESIGN STORM (2-YEARS, 24-HOUR). PROVIDE CALCULATIONS THAT DOCUMENT THE FOLLOWING PARAMETERS USED TO DESIGN THE APRON.

- PIPE DIAMETER (OR EQUIVALENT FOR FLUME, SWALE, ETC.), D, FEET
- DISCHARGE VELOCITY FROM DRAINAGE STRUCTURE, \(V_{pipe} \), FT/S
- DETERMINE GRADATION FOR \(d_{50} \) WELL GRADED STONE OR RECYCLED CONCRETE RIPRAP
- MEDIAN STONE DIAMETER \(d_{50} \) AND MAXIMUM STONE DIAMETER (\(d_{100} \)), FEET

FIGURE 2.13 SCHEMATICS OF VELOCITY DISSIPATION DEVICE
FILTER FABRIC DROP INLET PROTECTION CROSS SECTION (A-A)

FILTER FABRIC GRATE INLET PROTECTION CROSS SECTION (A-A)

AREA INLET PROTECTION FILTER BARRIER PLAN VIEW

NOTE:
1. STAKES SHALL CONFORM TO SPECIFICATIONS SECTION 202.5.2.2
2. HEIGHT OF INLET PROTECTION SURROUNDING THE INLET SHALL BE SHOWN ON THE PLANS AND MUST BE CHECKED TO VERIFY PONDING WATER WILL NOT CAUSE FLOODING OF PROPERTY OR DAMAGE.
3. CONCENTRATED DITCH FLOW COMING FROM ONE OR MORE SIDES TOWARD THE INLET MAY REQUIRE A STONE OVERFLOW STRUCTURE TO BE CONSTRUCTED ON ONE SIDE OF THE INLET.
4. POST SHALL BE INSTALLED AT EACH CORNER AND BETWEEN CORNERS IF THE DISTANCE IS GREATER THAN 6' BETWEEN CORNER POSTS.
FIGURE 3.11 SCHEMATICS OF EXCAVATED INLET PROTECTION

EXCAVATED INLET PROTECTION "Y" INLET SECTION A-A

EXCAVATED INLET PROTECTION GRATE INLET SECTION A-A

EXCAVATED INLET PROTECTION PLAN VIEW

Note:
1. Storage volume shall be design storm volume or 3,600 cubic feet per acre disturbed.
2. Concentrated ditch flow coming from one or more sides toward the inlet may require a stone overflow structure to be constructed on one side of the inlet.
CONSTRUCTION CONTROLS

EXTENT OF GRADING TO PROVIDE THE CONTROLLED OUTLET
STORAGE VOLUME
HEIGHT, SLOPE, AND LENGTH OF STONE OUTLET
DESIGN STORM VOLUME AND FLOW RATE AT THE TRAP
SIZE OF CONTRIBUTING DRAINAGE AREA

DESIGN THE TRAP.

SITE TOPOGRAPHY. PROVIDE CALCULATIONS THAT DOCUMENT THE FOLLOWING PARAMETER USED TO

NOTE: ACTUAL DIMENSIONS OF THE SEDIMENT TRAP SHALL BE DESIGNED BASED ON FLOW CONDITIONS AND
SITE TOPOGRAPHY. PROVIDE CALCULATIONS THAT DOCUMENT THE FOLLOWING PARAMETER USED TO
DESIGN THE TRAP:
- SIZE OF CONTRIBUTING DRAINAGE AREA
- DESIGN STORM VOLUME AND FLOW RATE AT THE TRAP
- HEIGHT, SLOPE, AND LENGTH OF STONE OUTLET
- STORAGE VOLUME
- EXTENT OF GRADING TO PROVIDE THE CONTROLLED OUTLET

EXCAVATED STONE OUTLET SEDIMENT TRAP ISOMETRIC VIEW

NOTE: ACTUAL DIMENSIONS OF THE SEDIMENT TRAP SHALL BE DESIGNED BASED ON FLOW CONDITIONS AND
SITE TOPOGRAPHY. PROVIDE CALCULATIONS THAT DOCUMENT THE FOLLOWING PARAMETER USED TO
DESIGN THE TRAP:
- SIZE OF CONTRIBUTING DRAINAGE AREA
- DESIGN STORM VOLUME AND FLOW RATE AT THE TRAP
- HEIGHT, SLOPE, AND LENGTH OF STONE OUTLET
- STORAGE VOLUME
- EXTENT OF GRADING TO PROVIDE THE CONTROLLED OUTLET

FIGURE 3.30 SCHEMATICS OF EXCAVATED STONE OUTLET SEDIMENT TRAP (1 OF 2)
CONSTRUCTION CONTROLS

EXCAVATED STONE OUTLET SEDIMENT TRAP VIEW LOOKING UPSTREAM (A-A)

EXCAVATED STONE OUTLET SEDIMENT TRAP SECTION VIEW (B-B)

FIGURE 3.30 SCHEMATICS OF EXCAVATED STONE OUTLET SEDIMENT TRAP (2 OF 2)
CONCRETE WASHOUT NOTES:

1. WASHOUT AREA MUST BE CLEARLY MARKED WITH SIGNAGE NOTING THE WASHOUT AREA.

2. WASHOUT STRUCTURES SHALL BE CLEANED OUT WHEN THE STRUCTURE IS 75% FULL. TEMPORARY CONCRETE WASHOUT FACILITY SHOULD BE MAINTAINED TO PROVIDE ADEQUATE HOLDING CAPACITY.

FIGURE 4.1 SCHEMATICS OF CONCRETE WASHOUT CONTAINMENT
TYPICAL ROCK RIPRAP SLOPE PROTECTION SECTION

ROCK RIPRAP TOP OF BANK DETAIL

- ROCK RIPRAP DRY OR GROUTED AS SHOWN ON EROSION CONTROL PLANS
 \[T = 1.5 \times d_{50} \]
- FILTER FABRIC SPLICES SHALL HAVE A MINIMUM 18 INCHES OVERLAP
 \[d_{\text{min}} = \text{____} \]
- DETERMINE GRADATION FOR \(d_{50} \) WELL GRADED STONE
 \[d_{50} = \text{____} \]
- MEDIAN STONE DIAMETER \(d_{50} \) AND MAXIMUM STONE DIAMETER \(d_{100} \), FEET
 \[d_{100} = \text{____} \]

FIGURE X.XX RIPRAP SCHEMATICS OF ROCK RIPRAP (SHEET 1 OF 2)
FIGURE X.XX RIPRAPH SCHEMATICS OF ROCK RIPRAPH (SHEET 2 OF 2)
TEMPORARY TRASH SCREEN DETAIL

NOTES:
1. CONCENTRATED DITCH FLOW COMING TOWARD THE INSTALLATION WILL REQUIRE A STONE OVERFLOW STRUCTURE TO BE CONSTRUCTED.
2. HEIGHT OF INSTALLATION SHALL BE SHOWN ON PLANS AND MUST BE CHECKED TO VERIFY PONDING WATER WILL NOT CAUSE FLOODING OF PROPERTY OR DAMAGE.
3. ENGINEER TO VERIFY APPLICABILITY OF TEMPORARY TRASH SCREEN.

PROFILE OF TEMPORARY TRASH SCREEN DETAIL

FIGURE X.XX TRASH SCREEN/CATCH DETAIL (SHEET 1 OF 2)
EXISTING/PROPOSED STORM DRAIN OUTLET

INSTALL COLLAR ON HEADWALL OR OPTIONAL WEIR CONFIGURATION DOWNSTREAM OF OUTFALL

PRE-MANUFACTURED MESH BAG VARIES BY MANUFACTURER MINIMUM 20mm/0.75-INCH MESH OPENING

OUTLET TRASH SCREEN BAG

FIGURE X.XX TRASH SCREEN/CATCH DETAIL (SHEET 2 OF 2)