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1.0 Streets and Closed Conduits 

1.1 Stormwater Street and Closed Conduit Design Overview  

 

1.1.1 Stormwater System Design 

Stormwater system design is an integral component of both site and overall stormwater management 
design.  Good drainage design must strive to maintain compatibility and minimize interference with 
existing drainage patterns; control flooding of property, structures, and roadways for design flood events; 
and minimize potential environmental impacts on stormwater runoff. 
 
Stormwater collection systems must be designed to provide adequate surface drainage while at the same 
time meeting other stormwater management goals such as water quality, streambank protection, habitat 
protection, and groundwater recharge. 
 

1.1.2 System Components 

The stormwater system components consist of all the integrated site design practices and stormwater 
controls utilized on the site.  Three considerations largely shape the design of the stormwater systems: 
water quality, streambank protection, and flood control. 
 
The on-site flood control systems are designed to remove stormwater from areas such as streets and 
sidewalks for public safety reasons.  The drainage system can consists of inlets, street and roadway 
gutters, roadside ditches, small channels and swales, stormwater ponds and wetlands, and small 
underground pipe systems which collect stormwater runoff from mid-frequency storms and transport it to 
structural control facilities, pervious areas, and/or the larger stormwater systems (i.e., natural waterways, 
large man-made conduits, and large water impoundments). 
 
The stormwater (major) system consists of natural waterways, large man-made conduits, and large water 
impoundments.  In addition, the major system includes some less obvious drainageways such as 
overload relief swales and infrequent temporary ponding areas.  The stormwater system includes not only 
the trunk line system that receives the water, but also the natural overland relief which functions in case 
of overflow from or failure of the on-site flood control system.  Overland relief must not flood or damage 
houses, buildings or other property. 
 
This section is intended to provide design criteria and guidance on several on-site flood control system 
components; including street and roadway gutters, inlets, and storm drain pipe systems.  Section 2.0 
covers storage design and outlet structures. Section 3.0 covers the design of culverts, vegetated and 
lined open channels, and bridges. Section 4.0 covers energy dissipation devices for outlet protection.  
The rest of this section covers important considerations to keep in mind in the planning and design of 
stormwater drainage facilities. 
 

1.1.3 Checklist for Planning and Design 

The following is a general procedure for drainage system design on a development site. 

A. Analyze topography, including: 

1. Check off-site drainage pattern.  Where is water coming onto the site?  Where is water leaving 
the site?  

2. Check on-site topography for surface runoff and storage, and infiltration 
a. Determine runoff pattern: high points, ridges, valleys, streams, and swales.  Where is the 

water going? 
b. Overlay the grading plan and indicate watershed areas:  calculate square footage (acreage), 

points of concentration, low points, etc. 
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B. Analyze other site conditions, including: 

1. Land use and physical obstructions such as walks, drives, parking, patios, landscape edging, 
fencing, grassed area, landscaped area, tree roots, etc. 

2. Soil type (infiltration rates). 

3. Vegetative cover (slope protection). 

C. Check potential drainage outlets and methods, including: 

On-site (structural control, receiving water)  

Off-site (highway, storm drain, receiving water, regional control)  

Natural drainage system (swales)  

Existing drainage system (drain pipe) 

D. Analyze areas for probable location of drainage structures and facilities. 

E. Identify the type and size of drainage system components required.  Design the drainage system and 
integrate with the overall stormwater management system and plan. 

 

1.1.4 Key Issues in Stormwater System Design 

The traditional design of stormwater systems has been to collect and convey stormwater runoff as rapidly 
as possible to a suitable location where it can be discharged.  This manual takes a different approach 
wherein the design methodologies and concepts of drainage design are to be integrated with the 
objectives for water quantity and quality control. This means: 

 Stormwater systems are to remove water efficiently enough to meet flood protection criteria and level 
of service requirements, and 

 These systems are to complement the ability of the site design and structural stormwater controls to 
mitigate the major stormwater impacts of urban development. 

 
The following are some of the key issues in integrating water quantity and quality control consideration in 
stormwater system design. 

General Design Considerations 

 Stormwater systems should be planned and designed so as to generally conform to natural drainage 
patterns and discharge to natural drainage pathways within a drainage basin.  These natural drainage 
pathways should only be modified as a last resort to contain and safely convey the peak flows 
generated by the development.  

 Runoff must be discharged in a manner that will not cause adverse impacts on downstream 
properties or stormwater systems.  In general, runoff from development sites within a drainage basin 
should be discharged at the existing natural drainage outlet or outlets.  If the developer wishes to 
change discharge points he or she must demonstrate that the change will not have any adverse 
impacts on downstream properties or stormwater (minor) systems.  

 It is important to ensure that the combined on-site flood control system and major stormwater system 
can handle blockages and flows in excess of the design capacity to minimize the likelihood of 
nuisance flooding or damage to private properties.  If failure of minor stormwater systems and/or 
major stormwater structures occurs during these periods, the risk to life and property could be 
significantly increased.  

 In establishing the layout of stormwater systems, it is essential to ensure that flows are not diverted 
onto private property during flows up to the major stormwater system design capacity. 
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Street and Roadway Gutters 

 Gutters are efficient flow conveyance structures.  This is not always an advantage if removal of 
pollutants and reduction of runoff is an objective.  Therefore, impervious surfaces should be 
disconnected hydrologically where possible, and runoff should be allowed to flow across pervious 
surfaces or through vegetated channels.  Gutters should be used only after other options have been 
investigated and only after runoff has had as much chance as possible to infiltrate and filter through 
vegetated areas. 

 It may be possible not to use gutters at all, or to modify them to channel runoff to off-road pervious 
areas or open channels.  For example, curb opening type designs take roadway runoff to smaller 
feeder grass channels.  Care should be taken not to create erosion problems in off-road areas.  
Protection during construction, establishment of strong stands of vegetation, and active maintenance 
may be necessary in some areas. 

 Use typical road sections that use grass channels or swales instead of gutters to provide for pollution 
reduction and reduce the impervious area required.  Figure 1.1 illustrates a roadway cross section 
that eliminates gutters for residential neighborhoods.  Flow can also be directed to center median 
strips in divided roadway designs.  To protect the edge of pavement, ribbons of concrete can be used 
along the outer edges of asphalt roads. 

 

Figure 1.1 Alternate Roadway Section without Gutters 
(Source:  Prince George’s County, MD, 1999) 

 

Inlets and Drains 

 Inlets should be located to maximize the overland flow path, take advantage of pervious areas, and 
seek to maximize vegetative filtering and infiltration.  For example, it might be possible to design a 
parking lot so water flows into vegetated areas prior to entering the nearest inlet. 

 Inlet location should not compromise safety or aesthetics.  It should not allow for standing water in 
areas of vehicular or pedestrian traffic, but should take advantage of natural depression storage 
where possible. 

 Inlets should be located to serve as overflows for structural stormwater controls.  For example, a 
bioretention device in a commercial area could be designed to overflow to a catch basin for larger 
storm events. 

 The choice of inlet type should match its intended use.  A sumped inlet may be more effective 
supporting water quality objectives. 

 Use several smaller inlets instead of one large inlet in order to: 

o Prevent erosion on steep landscapes by intercepting water before it accumulates too much 
volume and velocity. 
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o Provide a safety factor.  If a drain inlet clogs, the other surface drains may pick up the water. 

o Improve aesthetics.  Several smaller drains will be less obvious than one large drain. 

o Spacing smaller drain inlets will give surface runoff a better chance of reaching the drain.  
Water will have to travel farther to reach one large drain inlet. 

 

Closed Conduit Systems (Storm Drains/Sewers) 

 The use of integrated site design practices (and corresponding site design credits) should be 
considered to reduce the overall length of a closed conduit stormwater system. 

 Shorter and smaller conveyances can be designed to carry runoff to nearby holding areas, natural 
conservation areas, or filter strips (with spreaders at the end of the pipe). 

 Ensure that storms in excess of closed conduit design flows can be safely conveyed through a 
development without damaging structures or flooding major roadways.  This is often done through 
design of both a major and minor drainage system.  The on-site flood control system carries the mid-
frequency design flows while larger runoff events may flow across lots and along streets as long as it 
will not cause property damage or impact public safety. 
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1.2  On-Site Flood Control System Design 
1.2.1  Introduction 

On-Site Flood Control Systems, also known as minor drainage systems, quickly remove runoff from areas 
such as streets and sidewalks for public safety purposes.  The on-site flood control system consists of 
inlets, street and roadway gutters, roadside ditches, small channels and swales, and small underground 
pipe systems which collect stormwater runoff and transport it to structural control facilities, pervious areas, 
and/or the larger stormwater system (i.e., natural waterways, large man-made conduits, and large water 
impoundments). 
 
This section is intended to provide criteria and guidance for the design of on-site flood control system 
components including: 

 Street and roadway gutters 

 Stormwater inlets 

 Storm drain pipe systems 
 
Ditch, channel and swale design criteria and guidance are covered in Section 3.0.  
 
Procedures for performing gutter flow calculations are based on a modification of Manning's Equation.  
Inlet capacity calculations for grate, curb, and combination inlets are based on information contained in 
HEC-12 (USDOT, FHWA, 1984).  Storm drain system design is based on the use of the Rational Method 
Formula. 
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1.2.3 Symbols and Definitions 

To provide consistency within this section as well as throughout this Manual, the symbols listed in Table 
1.1 will be used.  These symbols were selected because of their wide use.  In some cases, the same 
symbol is used in existing publications for more than one definition.  Where this occurs in this section, the 
symbol will be defined where it occurs in the text or equations. 
 

Table 1.1 Symbols and Definitions 

Symbol Definition Units 

a Gutter depression in 

A Area of cross section ft2 

d or D Depth of gutter flow at the curb line ft 

D Diameter of pipe ft 

Eo Ratio of frontal flow to total gutter flow Qw/Q - 

g Acceleration due to gravity (32.2 ft/s2) ft/s2 

h Height of curb opening inlet ft 

H Head loss ft 

K Loss coefficient - 

L or LT Length of curb opening inlet ft 

L Pipe length ft 

n Roughness coefficient in the modified Manning’s formula for triangular gutter flow - 

P Perimeter of grate opening, neglecting bars and side against curb ft 

Q Rate of discharge in gutter cfs 

Qi Intercepted flow cfs 

Qs Gutter capacity above the depressed section cfs 

S or Sx Cross Slope - Traverse slope ft/ft 

S or SL Longitudinal slope ft/ft 

Sf Friction slope ft/ft 

S'w Depression section slope ft/ft 

T Top width of water surface (spread on pavement) ft 

Ts Spread above depressed section ft 

V Velocity of flow ft/s 

W Width of depression for curb opening inlets ft 

Z T/d, reciprocal of the cross slope - 

 

1.2.4 Street and Roadway Gutters 

Effective drainage of street and roadway pavements is essential to the maintenance of the roadway 
service level and to traffic safety.  Water on the pavement can interrupt traffic flow, reduce skid 
resistance, increase potential for hydroplaning, limit visibility due to splash and spray, and cause difficulty 
in steering a vehicle when the front wheels encounter puddles.  Surface drainage is a function of 
transverse and longitudinal pavement slope, pavement roughness, inlet spacing, and inlet capacity.  The 
design of these elements is dependent on storm frequency and the allowable spread of stormwater on the 
pavement surface.  
 
This section presents design guidance for gutter flow hydraulics originally published in HEC-12, Drainage 
of Highway Pavements and AASHTO's Model Drainage Manual. 
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Formula 

The following form of Manning's Equation should be used to evaluate gutter flow hydraulics: 

 Q = [0.56/n] Sx
5/3 S1/2 T8/3 (1.1) 

 where: 

  Q = gutter flow rate, cfs 

  Sx = pavement cross slope, ft/ft 

  n = Manning's roughness coefficient 

  S = longitudinal slope, ft/ft 

  T = width of flow or spread, ft 
 
Equation 1.1 was first presented by C.F. Izzard in 1946. 
 

Nomograph 

Figure 1.2 is a nomograph for solving Equation 1.1.  Manning's n values for various pavement surfaces 
are presented in Table 1.2 below.  Note: the nomograph will not work on slopes steeper than 3% - 4% for 
2 and 3 lane thoroughfares.  Also, the “Q” in the nomograph is only for n = 0.016. 
 

Manning's n Table 

Table 1.2 Manning’s n Values for Street and Pavement Gutters 

Type of Gutter or Pavement Manning's n 

Concrete gutter, troweled finish 0.014 

Asphalt pavement: 
 Smooth texture 
 Rough texture 

 
0.015 
0.019 

Concrete gutter with asphalt pavement: 
 Smooth 
 Rough 

 
0.015 
0.018 

Concrete pavement: 
 Float finish 
 Broom finish 

 
0.017 
0.019 

For gutters with small slopes, where sediment may accumulate, 
increase above values of n by 

 
0.002 

Note: Based on the statement of Izzard (1946) and confirmation by model studies (Ickert and Crosby, 2003), the n-
values given in Table 4-3 of HEC No. 22, 2001, were increased by 18% to derive the n-values in this table. 

 

Uniform Cross Slope 

The nomograph in Figure 1.2 is used with the following procedures to find gutter capacity for uniform 
cross slopes: 
 
Condition 1:  Find spread, given gutter flow. 

Step 1 Determine input parameters, including longitudinal slope (S), cross slope (Sx), gutter flow (Q), 
and Manning's n. 

Step 2 Draw a line between the S and Sx scales and note where it intersects the turning line. 
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Step 3 Draw a line between the intersection point from Step 2 and the appropriate gutter flow value on 
the capacity scale.  If Manning's n is 0.016, use Q from Step 1; if not; use the product of Q and 
n (Qn). 

Step 4 Read the value of the spread (T) at the intersection of the line from Step 3 and the spread 
scale. 

 
Condition 2:  Find gutter flow, given spread. 

Step 1 Determine input parameters, including longitudinal slope (S), cross slope (Sx), spread (T), and 
Manning's n. 

Step 2 Draw a line between the S and Sx scales and note where it intersects the turning line. 

Step 3 Draw a line between the intersection point from Step 2 and the appropriate value on the T 
scale.  Read the value of Q or Qn from the intersection of that line on the capacity scale. 

Step 4 For Manning's n values of 0.016, the gutter capacity (Q) from Step 3 is selected.  For other 
Manning's n values, the gutter capacity times n (Qn) is selected from Step 3 and divided by the 
appropriate n value to give the gutter capacity. 
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Figure 1.2 Flow in Triangular Gutter Sections 
(Source:  AASHTO Model Drainage Manual, 1991) 

 

 
 

1. For V-Shape, use the nomograph with 
Sx = Sx1Sx2 / (Sx1 + Sx2) 

2. To determine discharge in gutter with 
composite cross slopes, find Qs using 
Ts and Sx.  Then, use Figure 3-2 to find 
Eo.  The total discharge is Q = Qs / (1 - 

Eo), and Qw = Q - Qs. 
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Composite Gutter Sections 

Figure 1.3 in combination with Figure 1.2 can be used to find the flow in a gutter with width (W) less than 
the total spread (T).  Such calculations are generally used for evaluating composite gutter sections or 
frontal flow for grate inlets. 
 
Figure 1.4 provides a direct solution of gutter flow in a composite gutter section.  The flow rate at a given 
spread or the spread at a known flow rate can be found from this figure.  Figure 1.4 involves a complex 
graphical solution of the equation for flow in a composite gutter section.  Typical of graphical solutions, 
extreme care in using the figure is necessary to obtain accurate results. 
 
Condition 1:  Find spread, given gutter flow. 

Step 1 Determine input parameters, including longitudinal slope (S), cross slope (Sx), depressed 
section slope (Sw), depressed section width (W), Manning's n, gutter flow (Q), and a trial value 
of gutter capacity above the depressed section (Qs). 

Step 2 Calculate the gutter flow in W (Qw), using the equation: 

 Qw = Q – Qs (1.2) 
 
Step 3 Calculate the ratios Qw/Q or Eo and Sw/Sx and use Figure 1.3 to find an appropriate value of 

W/T. 

Step 4 Calculate the spread (T) by dividing the depressed section width (W) by the value of W/T from 
Step 3. 

Step 5 Find the spread above the depressed section (Ts) by subtracting W from the value of T 
obtained in Step 4. 

Step 6 Use the value of Ts from Step 5 along with Manning's n, S, and Sx to find the actual value of Qs 
from Figure 1.2. 

Step 7 Compare the value of Qs from Step 6 to the trial value from Step 1.  If values are not 
comparable, select a new value of Qs and return to Step 1. 

 
Condition 2:  Find gutter flow, given spread. 

Step 1 Determine input parameters, including spread (T), spread above the depressed section (Ts), 
cross slope (Sx), longitudinal slope (S), depressed section slope (Sw), depressed section width 
(W), Manning's n, and depth of gutter flow (d). 

Step 2 Use Figure 1.2 to determine the capacity of the gutter section above the depressed section 
(Qs).  Use the procedure for uniform cross slopes, substituting Ts for T. 

Step 3 Calculate the ratios W/T and Sw/Sx, and, from Figure 1.3, find the appropriate value of Eo (the 
ratio of Qw/Q). 

Step 4 Calculate the total gutter flow using the equation: 

 Q = Qs / (1 - Eo) (1.3) 
 where: 

  Q = gutter flow rate, cfs 

  Qs = flow capacity of the gutter section above the depressed section, cfs 

  Eo = ratio of frontal flow to total gutter flow (Qw/Q) 

Step 5 Calculate the gutter flow in width (W), using Equation 1.2. 
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Figure 1.3 Ratio of Frontal Flow to Total Gutter Flow 

(Source:  AASHTO Model Drainage Manual, 1991) 
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Figure 1.4 Flow in Composite Gutter Sections 
(Source:  AASHTO Model Drainage Manual, 1991) 
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Examples 

Example 1 

Given: 

 T = 8 ft 

 Sx = 0.025 ft/ft 

 n = 0.015 

 S = 0.01 ft/ft 
 
Find: 

1. Flow in gutter at design spread 

2. Flow in width (W = 2 ft) adjacent to the curb 
 
Solution: 

a. From Figure 1.2, Qn = 0.03 
 Q = Qn/n = 0.03/0.015 = 2.0 cfs 

b. T = 8 - 2 = 6 ft 
 (Qn)2 = 0.014 (Figure 1.2) (flow in 6-foot width outside of width (W)) 
 Q = 0.014/0.015 = 0.9 cfs 
 Qw = 2.0 - 0.9 = 1.1 cfs 
 
Flow in the first 2 ft adjacent to the curb is 1.1 cfs and 0.9 cfs in the remainder of the gutter.  
 
Example 2 

Given: 

 T = 6 ft 

 Sw = 0.0833 ft/ft 

 Ts = 6 - 1.5 = 4.5 ft 

 W = 1.5 ft 

 Sx = 0.03 ft/ft 

 n = 0.014 

 S = 0.04 ft/ft 
 
Find: 

 Flow in the composite gutter 
 
Solution: 

1. Use Figure 1.2 to find the gutter section capacity above the depressed section. 
 Qsn = 0.038 
 Qs = 0.038/0.014 = 2.7 cfs 

2. Calculate W/T = 1.5/6 = 0.25 and  
 Sw/Sx = 0.0833/0.03 = 2.78 
 Use Figure 1.3 to find Eo = 0.64 

3. Calculate the gutter flow using Equation 1.3 
 Q = 2.7/(1 - 0.64) = 7.5 cfs 

4. Calculate the gutter flow in width, W, using Equation 1.2 
 Qw = 7.5 - 2.7 = 4.8 cfs 
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Parabolic Cross Slope 

The following methodology regarding Parabolic cross-slopes was excerpted from the City of Austin 
Drainage Criteria Manual dated July 2003.  
 
Flows in the gutter of a parabolically crowned pavement are calculated from a variation of Manning’s 
Equation, which assumes steady flow in a prismatic open channel. However, this equation is complicated 
and difficult to solve for each design case.  
 
To provide a means of determining the flow in the gutter, generalized gutter flow equations for 
combinations of parabolic crown heights, curb splits and street grades of different street widths have been 
prepared. All of these equations have a logarithmic form. 
  
Note:  The street width used in this section is measured from face of curb to face of curb.  
 
Streets Without Curb Split 
 
Curb split is the vertical difference in elevation between curbs at a given street cross section. The gutter 
flow equation for parabolic crown streets without any curb split is:  

 log Q = K0 + K1 log S0 + K2 log y0 (1.4) 
 where: 

  Q = Gutter flow rate, cfs 

  S0 = Street grade, ft/ft 

  y0 = Water depth in the gutter, feet 

  K0, K1, K2 = Constant coefficients shown in Table 1.3 for different street widths 

 

Table 1.3 Coefficients for Equation 1.4, Streets Without 
 Curb Split  

Street Width* (ft)  Coefficients  

 K0  K1  K2  

30  2.85  0.50  3.03  

36  2.89  0.50  2.99  

40  2.85  0.50  2.89  

44  2.84  0.50  2.83  

48  2.83  0.50  2.78  

60  2.85  0.50  2.74  

*Note: Based on the Transportation Criteria Manual the street 
width is measured from face of curb to face of curb (FOC-FOC).  

Source: City of Austin, Watershed Engineering Division  

 
Streets With Curb Split 
 
The gutter flow equation for parabolic crown streets with curb split is:  

 log Q = K0 + K1 log S0 + K2 log y0 + K3 (CS) (1.5) 
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 where: 

  Q = Gutter flow rate, cfs 

  S0 = Street grade, ft/ft 

  y0 = Water depth in the gutter, feet 

  CS = Curb split, feet 

  K0, K1, K2, K3 = Constant coefficients shown in Tables 1.4 and 1.5 

 
The K values in Equation 1.5 are found in Tables 1.4 and 1.5 for different street widths.  Table 1.4 is used 
when calculating the higher gutter flows, and Table 1.5 is used when calculating the lower gutter flows.  
 

Table 1.4 Coefficients for Equation 1.5, Streets With Curb Split – Higher Gutter  

Street Width* (ft) Coefficients  
Curb Split 
Range (ft) 

 K0  K1  K2  K3   

30  2.85  0.50  3.03  -0.131  0.0-0.6  

36  2.89  0.50  2.99  -0.140  0.0-0.8  

40  2.85  0.50  2.89  -0.084  0.0-0.8  

44  2.84  0.50  2.83  -0.091  0.0-0.9  

48  2.83  0.50  2.78  -0.095  0.0-1.0  

60  2.85  0.50  2.74  -0.043  0.0-1.2  

Source: City of Austin, Watershed Engineering Division  

 

Table 1.5 Coefficients for Equation 1.5, Streets With Curb Split – Lower Gutter  

Street Width* (ft) Coefficients  
Curb Split 
Range (ft) 

 K0  K1  K2  K3   

30  2.70  0.50  2.74  -0.215  0.0-0.6  

36  2.74  0.50  2.73  -0.214  0.0-0.8  

40  2.75  0.50  2.73  -0.198  0.0-0.8  

44  2.76  0.50  2.73  -0.186  0.0-0.9  

48  2.77  0.50  2.72  -0.175  0.0-1.0  

60  2.80  0.50  2.71  -0.159  0.0-1.2  

Source: City of Austin, Watershed Engineering Division  

 
 
All the crown heights for different street widths are calculated by the following equation:  
 

Crown Height (feet) = 0.5 * W * Sx 

where,  

W = street width, feet  
Sx = road cross slope, ft/ft  
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Parabolic Crown Location  
 
The gutter flow equation presented for parabolic crowns with split curb heights is based on a procedure 
for locating the street crown. The procedure allows the street crown to shift from the street center line 
toward the high ¼ point of the street in direct proportion to the amount of curb split. The maximum curb 
split occurs with the crown at the ¼ point of the street. The maximum allowable curb split for a street with 
parabolic crowns is 0.02 feet per foot of street width, except for 30-foot side streets where the maximum 
curb split is considered to be 5 feet..  
 
Example: Determination of Crown Location  
 
 Given: 0.4 feet Design split on 30-foot wide street.  
 

Maximum Curb Split = 0.02 x street width  
 = 0.2 x 30 feet = 0.6 feet  
Maximum Movement = ¼ street width for 30-foot street  
 = ¼ x 30 feet = 7.5 feet  
 
Split Movement = (Design Split x W/Maximum Split x 4)  
 = (0.4 x 30/0.6 x 4) = 5 feet  

 
Curb splits that are determined by field survey, whether built intentionally or not, should be considered 
when determining the capacity of the curb flow. 
 
Special consideration should be given when working with cross sections which have the pavement crown 
above the top of curb. When the crown exceeds the height of the curb the maximum depth of water is 
equal to the height of the curb, not the crown height. It should be noted that a parabolic section where the 
crown equals the top of curb will carry more water than a section which has the crown one (1) inch above 
the top of curb.  For other parabolic roadway sections not included in Tables 1.3, 1.4, and 1.5, see HEC-
22 Urban Design Manual by the Federal Highway Administration, dated August 2001.  
 

1.2.5 Stormwater Inlets 

Inlets are drainage structures used to collect surface water through grate or curb openings and convey it 
to storm drains or direct outlet to culverts.  Grate inlets subject to traffic should be bicycle safe and be 
load-bearing adequate.  Appropriate frames should be provided.  
 
Inlets used for the drainage of highway surfaces can be divided into three major classes: 

 Grate Inlets – These inlets include grate inlets consisting of an opening in the gutter covered by one 
or more grates, and slotted inlets consisting of a pipe cut along the longitudinal axis with a grate or 
spacer bars to form slot openings.  

 Curb-Opening Inlets – These inlets are vertical openings in the curb covered by a top slab.   

 Combination Inlets – These inlets usually consist of both a curb-opening inlet and a grate inlet placed 
in a side-by-side configuration, but the curb opening may be located in part upstream of the grate.  

 
Inlets may be classified as being on a continuous grade or in a sump.  The term "continuous grade" refers 
to an inlet located on the street with a continuous slope past the inlet with water entering from one 
direction.  The "sump" condition exists when the inlet is located at a low point and water enters from both 
directions.  Sump areas should have an overflow route or channel. 
 
Where significant ponding can occur, in locations such as underpasses and in sag vertical curves in 
depressed sections, it is good engineering practice to place flanking inlets on each side of the inlet at the 
low point in the sag.  The flanking inlets should be placed so they will limit spread on low gradient 
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approaches to the level point and act in relief of the inlet at the low point if it should become clogged or if 
the design spread is exceeded.  
 
The design of grate inlets will be discussed in Section 1.2.6, curb inlet design in Section 1.2.7, and 
combination inlets in Section 1.2.8. 
 

1.2.6 Grate Inlet Design 

Grate Inlets on Grade 

The capacity of an inlet depends upon its geometry and the cross slope, longitudinal slope, total gutter 
flow, depth of flow, and pavement roughness.  The depth of water next to the curb is the major factor in 
the interception capacity of both gutter inlets and curb opening inlets.  At low velocities, all of the water 
flowing in the section of gutter occupied by the grate, called frontal flow, is intercepted by grate inlets, and 
a small portion of the flow along the length of the grate, termed side flow, is intercepted.  On steep slopes, 
only a portion of the frontal flow will be intercepted if the velocity is high or the grate is short and splash-
over occurs.  For grates less than 2 feet long, intercepted flow is small. 
 
A parallel bar grate is the most efficient type of gutter inlet; however, when crossbars are added for 
bicycle safety, the efficiency is greatly reduced.  Where bicycle traffic is a design consideration, the 
curved vane grate and the tilt bar grate are recommended for both their hydraulic capacity and bicycle 
safety features.  They also handle debris better than other grate inlets but the vanes of the grate must be 
turned in the proper direction.  Where debris is a problem, consideration should be given to debris 
handling efficiency rankings of grate inlets from laboratory tests in which an attempt was made to 
qualitatively simulate field conditions.  Table 1.6 presents the results of debris handling efficiencies of 
several grates.  Debris handling efficiencies were based on the total number of simulated leaves arriving 
at the grate and the number passed. 
 
The ratio of frontal flow to total gutter flow, Eo, for straight cross slope is expressed by the following 

equation: 

 Eo = Qw/Q = 1 - (1 - W/T)2.67 (1.6) 
 where: 

  Q = total gutter flow, cfs 

  Qw = flow in width W, cfs 

  W = width of depressed gutter or grate, ft 

  T = total spread of water in the gutter, ft 
 

Table 1.6 Grate Debris Handling Efficiencies 

Rank Grate 
Longitudinal Slope 

(0.005) (0.04) 

1 CV - 3-1/4 - 4-1/4 46 61 

2 30 - 3-1/4 - 4 44 55 

3 45 - 3-1/4 - 4 43 48 

4 P - 1-7/8 32 32 

5 P - 1-7/8 - 4 18 28 

6 45 - 2-1/4 - 4 16 23 

7 Reticuline 12 16 

8 P - 1-1/8 9 20 

Source:  "Drainage of Highway Pavements" (HEC-12), Federal Highway Administration, 1984. 



 iSWMTM Technical Manual Hydraulics 

Streets and Closed Conduits HA-18 
April 2010, Revised 9/2014 

Figure 1.3 provides a graphical solution of Eo for either depressed gutter sections or straight cross slopes.  
The ratio of side flow, Qs, to total gutter flow is: 

 Qs/Q = 1 - Qw/Q = 1 - Eo (1.7) 
 
The ratio of frontal flow intercepted to total frontal flow, Rf, is expressed by the following equation: 

 Rf = 1 - 0.09 (V - V0) (1.8) 
 where: 

  V = velocity of flow in the gutter, ft/s (using Q from Figure 1.2) 

  Vo = gutter velocity where splash-over first occurs, ft/s (from Figure 1.5) 
  
This ratio is equivalent to frontal flow interception efficiency.  Figure 1.5 provides a solution of Equation 
1.8, which takes into account grate length, bar configuration and gutter velocity at which splash-over 
occurs.  The gutter velocity needed to use Figure 1.5 is total gutter flow divided by the area of flow.  The 
ratio of side flow intercepted to total side flow, Rs, or side flow interception efficiency, is expressed by: 

 Rs = 1 / [1 + (0.15V1.8/SxL2.3)] (1.9) 
 where: 

  L = length of the grate, ft 
 
Figure 1.5 provides a solution to Equation 1.9. 
 
The efficiency, E, of a grate is expressed as: 

 E = RfEo + Rs(1 - Eo) (1.10) 
 
The interception capacity of a grate inlet on grade is equal to the efficiency of the grate multiplied by the 
total gutter flow: 

 Qi = EQ = Q[RfEo + Rs(1 - Eo)] (1.11) 
 
The following example illustrates the use of this procedure. 

Given: 

 W = 2 ft 

 T = 8 ft 

 Sx = 0.025 ft/ft 

 S = 0.01 ft/ft 

 Eo = 0.69 

 Q = 3.0 cfs 

 V = 3.1 ft/s 

 Gutter depression = 2 in 
 

Find: 

 Interception capacity of: 

 1. a curved vane grate, and 

 2. a reticuline grate 2-ft long and 2-ft wide 
 
Solution: 

 From Figure 1.5 for Curved Vane Grate, Rf = 1.0 

 From Figure 1.5 for Reticuline Grate, Rf = 1.0 

 From Figure 1.6 Rs = 0.1 for both grates 
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 From Equation 1.11: 

 Qi = 3.0[1.0 X 0.69 + 0.1(1 - 0.69)] = 2.2 cfs 
 
For this example, the interception capacity of a curved vane grate is the same as that for a reticuline grate 
for the sited conditions. 
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Figure 1.5 Grate Inlet Frontal Flow Interception Efficiency 
(Source:  HEC-12, 1984) 
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Figure 1.6 Grate Inlet Side Flow Interception Efficiency 
(Source:  HEC-12, 1984) 
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Grate Inlets in Sag 

A grate inlet in a sag operates as a weir up to a certain depth, depending on the bar configuration and 
size of the grate, and as an orifice at greater depths.  For a standard gutter inlet grate, weir operation 
continues to a depth of about 0.4 feet above the top of grate and when depth of water exceeds about 1.4 
feet, the grate begins to operate as an orifice.  Between depths of about 0.4 feet and about 1.4 feet, a 
transition from weir to orifice flow occurs. 
 
The capacity of grate inlets operating as a weir is: 

 Qi = CPd1.5 (1.12) 
 where: 

  P = perimeter of grate excluding bar widths and the side against the curb, ft 

  C = 3.0 

  d = depth of water above grate, ft  
 
and as an orifice is: 

 Qi = CA(2gd)0.5 (1.13) 
 where: 

  C = 0.67 orifice coefficient 

  A = clear opening area of the grate, ft2 

  g = 32.2 ft/s2 
 
Figure 1.7 is a plot of Equations 1.12 and 1.13 for various grate sizes.  The effect of grate size on the 
depth at which a grate operates as an orifice is apparent from the chart.  Transition from weir to orifice 
flow results in interception capacity less than that computed by either weir or the orifice equation.  This 
capacity can be approximated by drawing in a curve between the lines representing the perimeter and net 
area of the grate to be used.  The following example illustrates the use of this figure. 

Given: 

 A symmetrical sag vertical curve with equal bypass from inlets upgrade of the low point; allow for 50% 
clogging of the grate.  

 Qb = 3.6 cfs 

 Q = 8 cfs, 25-year storm 

 T = 10 ft, design 

 Sx = 0.05 ft/ft 

 d = TSx = 0.5 ft 

 
Find: 

 Grate size for design Q.  Check spread at S = 0.003 on approaches to the low point. 
 
Solution: 

 From Figure 1.7, a grate must have a perimeter of 8 ft to intercept 8 cfs at a depth of 0.5 ft.   
 
Some assumptions must be made regarding the nature of the clogging in order to compute the capacity 
of a partially clogged grate.  If the area of a grate is 50% covered by debris so that the debris-covered 
portion does not contribute to interception, the effective perimeter will be reduced by a lesser amount than 
50%.  For example if a 2-ft x 4-ft grate is clogged so that the effective width is 1 ft, then the perimeter, P = 
1 + 4 + 1 = 6 ft, rather than 8 ft, the total perimeter, or 4 ft, half of the total perimeter.  The area of the 
opening would be reduced by 50% and the perimeter by 25%. 
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Figure 1.7 Grate Inlet Capacity in Sag Conditions 
(Source:  HEC-12, 1984) 

 
Therefore, assuming 50% clogging along the length of the grate, a 4 x 4, a 2 x 6, or a 3 x 5 grate would 
meet requirements of an 8-ft perimeter 50% clogged. 
 
Assuming that the installation chosen to meet design conditions is a double 2 x 3 ft grate, for 50% 
clogged conditions:  P = 1 + 6 + 1 = 8 ft 
 
For 25-year flow: d = 0.5 ft (from Figure 1.7) 
 
The American Society of State Highway and Transportation Officials (AASHTO) geometric policy 
recommends a gradient of 0.3% within 50 ft of the level point in a sag vertical curve.  
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Check T at S = 0.003 for the design and check flow: 
 
 Q = 3.6 cfs, T = 8.2 ft (25-year storm) (from Figure 1.2) 
 
Thus a double 2 x 3-ft grate inlet with 50% clogging is adequate to intercept the design flow at a spread 
that does not exceed design spread, and to ensure the spread on the approaches to the low point will not 
exceed design spread.  However, the tendency of grate inlets to clog completely warrants consideration 
of a combination inlet or curb-opening inlet in sag where ponding can occur, as well as flanking inlets on 
the low gradient approaches. 
 

1.2.7 Curb Inlet Design 

Curb Inlets on Grade 

Following is a discussion of the procedures for the design of curb inlets on grade.  Curb-opening inlets 
are effective in the drainage of pavements where flow depth at the curb is sufficient for the inlet to perform 
efficiently.  Curb openings are relatively free of clogging tendencies and offer little interference to traffic 
operation.  They are a viable alternative to grates in many locations where grates would be in traffic lanes 
or would be hazardous for pedestrians or bicyclists.  
 
The length of curb-opening inlet required for total interception of gutter flow on a pavement section with a 
straight cross slope is determined using Figure 1.8.  The efficiency of curb-opening inlets shorter than the 
length required for total interception is determined using Figure 1.9. 
 
The length of inlet required for total interception by depressed curb-opening inlets or curb-openings in 
depressed gutter sections can be found by the use of an equivalent cross slope, Se, in the following 
equation: 

 Se = Sx + S'wEo (1.14) 
 where: 

  Eo = ratio of flow in the depressed section to total gutter flow 

  S'w = cross slope of gutter measured from the cross slope of the pavement, Sx (ft/ft) 

  S'w = (a/12W) 

 where: 

  a = gutter depression, in 

  W = width of depressed gutter, ft 
 
It is apparent from examination of Figure 1.8 that the length of curb opening required for total interception 
can be significantly reduced by increasing the cross slope or the equivalent cross slope.  The equivalent 
cross slope can be increased by use of a continuously depressed gutter section or a locally depressed 
gutter section. 
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Figure 1.8 Curb-Opening and Slotted Drain Inlet Length for Total Interception 
(Source:  HEC-12, 1984) 
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Figure 1.9 Curb-Opening and Slotted Drain Inlet Interception Efficiency 
(Source:  HEC-12, 1984) 

 
Design Steps 

Steps for using Figures 1.8 and 1.9 in the design of curb inlets on grade are given below.  

Step 1 Determine the following input parameters: 

Cross slope = Sx (ft/ft) 

Longitudinal slope = S (ft/ft) 

Gutter flow rate = Q (cfs) 

Manning's n = n 

Spread of water on pavement = T (ft) from Figure 1.2 

Step 2 Enter Figure 1.8 using the two vertical lines on the left side labeled n and S.  Locate the value 
for Manning's n and longitudinal slope and draw a line connecting these points and extend this 
line to the first turning line.  

Step 3 Locate the value for the cross slope (or equivalent cross slope) and draw a line from the point 
on the first turning line through the cross slope value and extend this line to the second turning 
line. 
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Step 4 Using the far right vertical line labeled Q locate the gutter flow rate.  Draw a line from this value 
to the point on the second turning line.  Read the length required from the vertical line labeled 
LT. 

Step 5 If the curb-opening inlet is shorter than the value obtained in Step 4, Figure 1.9 can be used to 
calculate the efficiency.  Enter the x-axis with the L/LT ratio and draw a vertical line upward to 
the E curve.  From the point of intersection, draw a line horizontally to the intersection with the 
y-axis and read the efficiency value. 

 
Example 

Given: 

 Sx =  0.03 ft/ft 

 n = 0.016 

 S = 0.035 ft/ft 

 Q = 5 cfs 

 S'w = 0.083 (a = 2 in, W = 2 ft) 
 
Find: 

1. Qi for a 10-ft curb-opening inlet 

2. Qi for a depressed 10-ft curb-opening inlet with a = 2 in, W = 2 ft, T = 8 ft (Figure 1.2) 
 
Solution: 

1. From Figure 1.8, LT = 41 ft, L/LT = 10/41 = 0.24 
 From Figure 1.9, E = 0.39, Qi = EQ = 0.39 x 5 = 2 cfs 

2. Qn = 5.0 x 0.016 = 0.08 cfs 
 Sw/Sx = (0.03 + 0.083)/0.03 = 3.77 
 T/W = 3.5 (from Figure 1.4) 
 T = 3.5 x 2 = 7 ft 
 W/T = 2/7 = 0.29 ft 
 Eo = 0.72 (from Figure 1.3) 
 Therefore, Se = Sx + S'wEo = 0.03 + 0.083(0.72) = 0.09 

 From Figure 1.8, LT = 23 ft, L/LT = 10/23 = 0.43 
 From Figure 1.9, E = 0.64, Qi = 0.64 x 5 = 3.2 cfs 
 
The depressed curb-opening inlet will intercept 1.6 times the flow intercepted by the undepressed curb 
opening and over 60% of the total flow. 
 

Curb Inlets in Sump 

For the design of a curb-opening inlet in a sump location, the inlet operates as a weir to depths equal to 
the curb opening height and as an orifice at depths greater than 1.4 times the opening height.  At depths 
between 1.0 and 1.4 times the opening height, flow is in a transition stage. 
 
The capacity of curb-opening inlets in a sump location can be determined from Figure 1.10, which 
accounts for the operation of the inlet as a weir and as an orifice at depths greater than 1.4h.  This figure 
is applicable to depressed curb-opening inlets and the depth at the inlet includes any gutter depression.  
The height (h) in the figure assumes a vertical orifice opening (see sketch on Figure 1.10).  The weir 
portion of Figure 1.10 is valid for a depressed curb-opening inlet when d < (h + a/12). 
 
The capacity of curb-opening inlets in a sump location with a vertical orifice opening but without any 
depression can be determined from Figure 1.11.  The capacity of curb-opening inlets in a sump location 
with other than vertical orifice openings can be determined by using Figure 1.12. 
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Design Steps 
 
Steps for using Figures 1.10, 1.11, and 1.12 in the design of curb-opening inlets in sump locations are 
given below. 

Step 1 Determine the following input parameters: 
Cross slope = Sx (ft/ft) 
Spread of water on pavement = T (ft) from Figure 1.2 
Gutter flow rate = Q (cfs) or dimensions of curb-opening inlet [L (ft) and H (in)] 
Dimensions of depression if any [a (in) and W (ft)] 

Step 2 To determine discharge given the other input parameters, select the appropriate Figure (1.10, 
1.11, or 1.12 depending on whether the inlet is in a depression and if the orifice opening is 
vertical).  

Step 3 To determine the discharge (Q), given the water depth (d), locate the water depth value on the 
y-axis and draw a horizontal line to the appropriate perimeter (p), height (h), length (L), or width 
x length (hL) line.  At this intersection draw a vertical line down to the x-axis and read the 
discharge value. 

Step 4 To determine the water depth given the discharge, use the procedure described in Step 3 
except enter the figure at the value for the discharge on the x-axis. 
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Figure 1.10 Depressed Curb-Opening Inlet Capacity in Sump Locations 
(Source:  AASHTO Model Drainage Manual, 1991) 
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Figure 1.11 Curb-Opening Inlet Capacity in Sump Locations 
(Source:  AASHTO Model Drainage Manual, 1991) 
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Figure 1.12 Curb-Opening Inlet Orifice Capacity for Inclined and Vertical Orifice Throats 
(Source:  AASHTO Model Drainage Manual, 1991) 
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Example: 
Given: 
 Curb-opening inlet in a sump location 

 L = 5 ft 

 h = 5 in 

1. Undepressed curb opening 
 Sx = 0.05 ft/ft 
 T = 8 ft 

2. Depressed curb opening 
 Sx = 0.05 ft/ft 
 a = 2 in 
 W = 2 ft 
 T = 8 ft 
 
Find: 

 Discharge Qi 
 
Solution: 

1. d = TSx = 8 x 0.05 = 0.4 ft 
 d < h 
 From Figure 10, Qi = 3.8 cfs 

2. d = 0.4 ft  
 h + a/12 = (5 + 2/12)/12 = 0.43 ft 

 since d < 0.43 the weir portion of Figure 1.10 is applicable (lower portion of the figure).  

 P = L + 1.8W = 5 + 3.6 = 8.6 ft 
 From Figure 1.9, Qi = 5 cfs 
 
At d = 0.4 ft, the depressed curb-opening inlet has about 30% more capacity than an inlet without 
depression.  
 

1.2.8 Combination Inlets 

Combination Inlets on Grade 

On a continuous grade, the capacity of an unclogged combination inlet with the curb opening located 
adjacent to the grate is approximately equal to the capacity of the grate inlet alone.  Thus capacity is 
computed by neglecting the curb opening inlet and the design procedures should be followed based on 
the use of Figures 1.5, 1.6, and 1.7. 
 

Combination Inlets in Sump 

All debris carried by stormwater runoff that is not intercepted by upstream inlets will be concentrated at 
the inlet located at the low point, or sump.  Because this will increase the probability of clogging for grated 
inlets, it is generally appropriate to estimate the capacity of a combination inlet at a sump by neglecting 
the grate inlet capacity.  Assuming complete clogging of the grate, Figures 1.10, 1.11, and 1.12 for curb-
opening inlets should be used for design. 
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1.2.9 Closed Conduit Systems (Storm Drains/ Sewers) 
Storm drain pipe systems, also known as storm sewers, are pipe conveyances used for transporting 
runoff from roadway and other inlets to outfalls at other structural stormwater controls and receiving 
waters.  Pipe drain systems are suitable mainly for medium to high-density residential and 
commercial/industrial development where the use of natural drainageways and/or vegetated open 
channels is not feasible. 
 
Closed conduit system are composed of different lengths and sizes of conduits (system segments) 
connected by appointment structures (system nodes).  Segments are most often circular pipe, but can be 
a box or other enclosed conduit.  Materials used are usually corrugated metal, plastic, and concrete but 
may be of other materials. 
 
Appurtenant structures serve many functions.  Inlets, access holes, and junction chambers are presented 
in this section. 
 

Inlets 

The primary function is to allow surface water to enter the closed conduit system.  Inlet structures may 
also serve as access points for cleaning and inspection.  Typical inlets structures are a standard drop 
inlet, catch basin, curb inlet, combination inlet, and Y inlet. (See Figures 1.13 and 1.14). 

 

 
Figure 1.13 Inlet Structures 

(HEC 22, 2001) 
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Figure 1.14 Capacity for Y Inlet in Sump 
(Fort Worth, 1967) 

 

Y 
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Inlet structures are located at the upstream end and at intermediate points within the closed conduit 
system.  Inlet placement is generally a trial and error procedure that attempts to produce the most 
economical and hydraulically effective system (HEC 22, 2001). 
 

Access Holes (Manholes) 

The primary function of an access hole is to provide access to the closed conduit system.  An access hole 
can also serve as a flow junction and can provide ventilation and pressure relief.  Typical access holes 
are shown in Figures 1.15 and 1.16 (HEC 22, 2001).  The materials commonly used for access hole 
construction are precast concrete and cast-in-place concrete. 
 

 

Figure 1.15 Typical Access Hole Configurations. 
(HEC22, 2001) 
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Figure 1.16 “Tee” Access Hole for Large Storm Drains 

(HEC 22, 2001) 

 
 

Junction Chambers 

A junction chamber, or junction box, is a special design underground chamber used to join two or more 
large storm drain conduits. This type of structure is usually required where storm drains are larger than 
the size that can be accommodated by standard access holes.  For smaller diameter storm drains, access 
holes are typically used instead of junction chambers.  Junction chambers by definition do not need to 
extend to the ground surface and can be completely buried.  However, it is recommended that riser 
structures be used to provide surface access and/or to intercept surface runoff.  
 
Materials commonly used for junction chamber construction include pre-cast concrete and cast-in-place 
concrete.  On storm drains constructed of corrugated steel, the junction chambers are sometimes made 
of the same material. 
 
To minimize flow turbulence in junction boxes, flow channels and benches are typically built into the 
bottom of the chambers.  Where junction chambers are used as access points for the storm drain system, 
their location should adhere to the spacing criteria outlined in Table 3.9 of the Criteria Manual. 
 

General Design Procedure 

The design of storm drain systems generally follows these steps:  

Step 1 Determine inlet location and spacing as outlined earlier in this section.  

Step 2 Prepare a tentative plan layout of the storm sewer drainage system including: 

a. Location of storm drains 

b. Direction of flow 

c. Location of manholes 

d. Location of existing facilities such as water, gas, or underground cables 

Step 3 Determine drainage areas and compute runoff using the Rational Method 

Step 4 After the tentative locations of inlets, drain pipes, and outfalls (including tailwaters) have been 
determined and the inlets sized, compute the rate of discharge to be carried by each storm 
drain pipe and determine the size and gradient of pipe required to care for this discharge.  This 
is done by proceeding in steps from the upstream end of a line downstream to the point at 
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which the line connects with other lines or the outfall, whichever is applicable.  The discharge 
for a run is calculated, the pipe serving that discharge is sized, and the process is repeated for 
the next run downstream.  The storm drain system design computation form (Figure 1.31) can 
be used to summarize hydrologic, hydraulic and design computations. 

Step 5 Examine assumptions to determine if any adjustments are needed to the final design.  
 
The rate of discharge at any point in the storm drainage system is not the sum of the inlet flow rates of all 
inlets above the section of interest.  It is generally less that this total.  The Rational Method is the most 
common means of determining design discharges for storm drain design and is explained in Section 1.2 
of the Hydrology Technical Manual.  The designer is usually concerned with two different times of 
concentration: one for inlet spacing and the other for pipe sizing 
 
The time of concentration for pipe sizing is defined as the time required for water to travel for the most 
hydraulically distant point in the total contributing watershed to the design point.  Typically, this time 
consists of two components: (1) the time for overland and gutter flow to reach the first inlet, and (2) the 
time to flow through the storm drainage system to the point of interest.   If the total time of concentration 
to the upstream inlet is less than five minutes, a minimum time of concentration of five minutes is used as 
the duration of rainfall.  The time of concentration for each successive inlet should be determined 
independently in the same manner as was used for the first inlet. 
 
The flow path having the longest time of concentration to the point of interest in the storm drainage 
system will usually define the duration used in selecting the intensity value in the Rational Method.  
Exceptions to the general application of the Rational Equation exist.  For example, a small relatively 
impervious area within a larger drainage area may have an independent discharge higher than that of the 
total area.  This anomaly may occur because of the higher runoff coefficient (C value) and higher intensity 
resulting from a short time of concentration.  If an exception does exist, it can generally be classified as 
one of two exception scenarios. 
 
The first exception occurs when a highly impervious section exists at the most downstream area of a 
watershed and the total upstream area flows through the lower impervious area.  When this situation 
occurs, two separate calculations should be made. 
 

 First, calculate the runoff from the total drainage area with its weighed C value and the intensity 
associated with the longest time of concentration.   

 Secondly, calculate the runoff using only the smaller less pervious area.  The typical procedure would 
be followed using the C value for the small less pervious area and the intensity associated with the 
shorter time of concentration. 

 
The results of these two calculations should be compared and the largest value of discharge should be 
used for design. 
 
The second exception exists when a smaller less pervious area is tributary to the larger primary 
watershed.  When this scenario occurs, two sets of calculations should also be made. 
 

 First, calculate the runoff form the total drainage area with its weighted C value and the intensity 
associated with the longest time of concentration. 

 Secondly, calculate the runoff to consider how much discharge from the larger primary area is 
contributing at the same time the peak from the smaller less pervious tributary area is occurring.  
When the small area is discharging, some discharge from the larger primary area is also contributing 
to the total discharge.  In this calculation, the intensity associated with the time of concentration from 
the small less pervious area is used. The portion of the larger primary area to be considered is 
determined by the following:  Ac=A (tc1/tc2).   
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Ac is the most downstream part of the larger primary area that will contribute to the discharge during the 
time of concentration associated with the smaller, less pervious area.  A is the area of the larger primary 
area, tc1 is the time of concentration of the smaller, less pervious, tributary area, and tc2 is the time of 
concentration associated with the larger primary area as is used in the first calculation.  The C value to be 
used in this computation should be the weighted C value of the smaller less pervious tributary area and 
the area Ac.  The area to be used in the Rational Method would be the area of the less pervious area plus 
Ac.  The second calculation should only be considered when the less pervious area is tributary to the area 
with the longer time of concentration and is at or near the downstream end of the total drainage area. 
 
Finally, the results of these calculations should be compared and the largest value of discharge should be 
used for design. 
 

Capacity Calculations 

The design procedures presented here assume flow within each storm drain segment is steady and 
uniform. This means the discharge and flow depth in each segment are assumed to be constant with 
respect to time and distance. Also, since storm drain conduits are typically prismatic, the average velocity 
throughout a segment is considered to be constant. 
 
In actual storm drainage systems, the flow at each inlet is variable, and flow conditions are not truly 
steady or uniform. However, since the usual hydrologic methods employed in storm drain design are 
based on computed peak discharges at the beginning of each run, it is a conservative practice to design 
using the steady uniform flow assumption. 
 
Although at times flow in a closed conduit may be under pressure or at other times the conduit may flow 
partially full, the usual design assumption is that the conduit is flowing fill but not under pressure.  Under 
this assumption the rate of head loss is the same as the slope of the pipe (S f=S, ft/ft).  Designing for full 
flow is a conservative assumption since the peak flow actually occurs at 93 percent of full flow. 
 
The most widely used formula for determining the hydraulic capacity of storm drain pipes for gravity and 
pressure flows is the Manning’s Formula, expressed by the following equation: 

 V = (1.486/n) R2/3 S1/2 (1.15) 
 where: 

  V = mean velocity of flow, ft/s 

  R = the hydraulic radius, ft - defined as the area of flow divided by the wetted flow surface or 
wetted perimeter (A/WP) 

  S = the slope of hydraulic grade line, ft/ft 

  n = Manning's roughness coefficient 
 
In terms of discharge, the above formula becomes: 

 Q = (1.486/n) A R2/3 S1/2 (1.16) 
 where: 

  Q = rate of flow, cfs 

  A = cross sectional area of flow, ft2 
 
For pipes flowing full, the area is (π/4)D2 and the hydraulic radius is D/4, so, the above equations 
become: 

 V = [0.590 D2/3S1/2]/n (1.17) 
 Q = [0.463 D8/3S1/2]/n (1.18) 
 where: 

  D = diameter of pipe, ft 
  S = slope of the pipe = Sf hydraulic grade line, ft/ft 
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The Manning's Equation can be written to determine friction losses for storm drain pipes as: 

 Hf = [0.453 n2V2L]/[R4/3] (1.19) 

 Hf = [(2.87 n2V2L]/[D4/3] (1.20) 

 Hf = [(185n2(V2/2g)L]/[D4/3] (1.21) 

 where: 

  Hf = total head loss due to friction, ft (Sf x L) 

  n = Manning's roughness coefficient 

  D = diameter of pipe, ft 

  L = length of pipe, ft 

  V = mean velocity, ft/s 

  R = hydraulic radius, ft 

  g = acceleration of gravity = 32.2 ft/sec2 
 
A nomograph solution of Manning's Equation for full flow in circular conduits is presented in Figure 1.17.  
Representative values of the Manning's coefficient for various storm drain materials are provided in Table 
1.8. It should be remembered that the values in the table are for new pipe tested in a laboratory. Actual 
field values for conduits may vary depending on the effect of abrasion, corrosion, deflection, and joint 
conditions. 
 
Figure 1.18 illustrates storm drain capacity sensitivity to the parameters in the Manning's Equation.  This 
figure can be used to study the effect changes in individual parameters will have on storm drain capacity. 
For example, if the diameter of a storm drain is doubled, its capacity will be increased by a factor of 6.0; if 
the slope is doubled, the capacity is increased by a factor of 1.4; however, if the roughness is doubled, 
the pipe capacity will be reduced by 50 percent. 
 
The hydraulic elements graph in Figures 1.19a and 1.19b is provided to assist in the solution of the 
Manning's Equation for part full flow in storm drains. The hydraulic elements chart shows the relative flow 
conditions at different depths in a circular pipe and makes the following important points: 

1.  Peak flow occurs at 93 percent of the height of the pipe. This means that if the pipe is designed for 
full flow, the design will be slightly conservative. 

2.  The velocity in a pipe flowing half-full is the same as the velocity for full flow. 

3.  Flow velocities for flow depths greater than half-full are greater than velocities at full flow. 

4.  As the depth of flow drops below half-full, the flow velocity drops off rapidly. The shape of a storm 
drain conduit also influences its capacity. Although most storm drain conduits are circular, a 
significant increase in capacity can be realized by using an alternate shape. Table 1.7 provides a 
tabular listing of the increase in capacity which can be achieved using alternate conduit shapes that 
have the same height as the original circular shape, but have a different cross sectional area. 
Although these alternate shapes are generally more expensive than circular shapes, their use can be 
justified in some instances based on their increased capacity. 
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Table 1.7 Increase in Capacity of Alternate Conduit Shapes Based on a 
 Circular Pipe with the Same Height 
       (HEC-22, 2001) 

 
Area 

(Percent Increase) 
Conveyance 

(Percent Increase) 

Circular -- -- 

Oval 63 87 

Arch 57 78 

Box (B = D) 27 27 
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Figure 1.17 Solution of Manning’s Equation for Flow in Storm Drains-English Units 
(Taken from “Modern Sewer Design” by American Iron and Steel Institute) 
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Figure 1.18 Storm Drain Capacity Sensitivity 
(HEC 22, 2001) 
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Table 1.8 Manning's Coefficients for Storm Drain Conduits 
       (HEC 22, 2001) 

Type of Culvert 
Roughness or 
Corrugation 

Manning's n 

Concrete Pipe Smooth 0.010-0.011 

Concrete Boxes Smooth 0.012-0.015 

Spiral Rib Metal Pipe Smooth 0.012-0.013 

 
Corrugated Metal Pipe, 
Pipe-Arch and Box 
(Annular or Helical 
Corrugations -- see Figure 
B-3 in Reference 2, 
Manning's n varies with 
barrel size) 
 

 
68 by 13 mm 
2-2/3 by 1/2 in 
Annular 
 
68 by 13 mm 
2-2/3 by 1/2 in 
Helical 
 
150 by 25 mm 
6 by 1 in 
Helical 
 
125 by 25 mm 
5 by 1 in 
 
75 by 25 mm 
3 by 1 in 
 
150 by 50 mm 
6 by 2 in 
Structural Plate 
 
230 by 64 mm 
9 by 2-1/2 in 
Structural Plate 

 
0.022-0.027 
 
 
 
0.011-0.023 
 
 
 
0.022-0.025 
 
 
 
0.025-0.026 
 
 
0.027-0.028 
 
 
 
0.033-0.035 
 
 
 
0.033-0.037 
 

Corrugated Polyethylene Smooth 0.009-0.015 

Corrugated Polyethylene Corrugated 0.018-0.025 

Polyvinyl chloride (PVC) Smooth 0.009-0.011 

*NOTE: The Manning's n values indicated in this table were obtained in the 
laboratory and are supported by the provided reference. Actual field values for 
culverts may vary depending on the effect of abrasion, corrosion, deflection, 
and joint conditions. 
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Figure 1.19a Hydraulic Elements of Circular Section  
(HEC 22, 2001) 
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Figure 1.19b Critical Depth in Circular Pipe-English Units 

(HEC 22, 2001) 
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Minimum Grades and Desirable Velocities 

The minimum slopes are calculated by the modified Manning’s formula:  

 S = [(nV)2]/[2.208R4/3] (1.22) 
 where: 

  S = the slope of the hydraulic grade line, ft/ft 

  n = Manning’s roughness coefficient 

  V = mean velocity of flow, ft/s 

  R = hydraulic radius, ft (area dived by wetted perimeter) 
 
For circular conduits flowing full but not under pressure, R=D/4, and the hydraulic grade line is equal to 
the slope of the pipe.  For these conditions Equation 1.22 may be expressed as: 

 S = 2.87(nV)2/D4/3 (1.23) 
For a minimum velocity of 2.5 fps, the minimum slope equation becomes: 

 S = 17.938(n2/D4/3) (1.24)  
 where: 

  D = diameter, ft 

 

Table 1.9 gives minimum slopes for two commonly used materials: concrete pipe with an n-value of 0.013 
and corrugated metal pipe with an n-value of 0.024. 
 
Minimum Grades 
 

Storm drains should operate with velocities of flow sufficient to prevent excessive deposits of solid 
materials; otherwise objectionable clogging may result.  The controlling velocity is near the bottom of the 
conduit and considerably less than the mean velocity of the sewer.  Storm drains shall be designed to 
have a minimum mean velocity flowing full of 2.5 fps.  Table 1.9 gives minimum slopes for two commonly 
used materials: concrete pipe (n = 0.013) and corrugated metal pipe (n = 0.024), flowing at 2.5 fps. 
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Storm Drain Storage 

If downstream drainage facilities are undersized for the design flow, a structural stormwater control may 
be needed to reduce the possibility of flooding.  The required storage volume can also be provided by 
using larger than needed storm drain pipe sizes and restrictors to control the release rates at manholes 
and/or junction boxes in the storm drain system.  The same design criteria for sizing structural control 
storage facilities are used to determine the storage volume required in the system (see Section 2.0 for 
more information). 
 

1.2.10 Energy Grade Line/Hydraulic Grade Line 
The energy grade line (EGL) is an imaginary line that represents the total energy along a channel or 
conduit carrying water. Total energy includes elevation head, velocity head and pressure head.   

 E = V2/2g + p/v + z    

  (1.25) 
 where: 

  E = Total energy, ft 

  V2/2g  = Velocity head, ft (kinetic energy) 

  p =  Pressure, lbs/ft2 

  v =  Unit weight of water, 62.4 lbs/ft3  

  p/v =  Pressure head, ft (potential energy) 

  z =  Elevation head, ft (potential energy) 
 

Table 1.9 Minimum Grades for Storm Drains for 2.5 fps 

Pipe Size 
(inches) 

Concrete Pipe (n = 0.013) 
Slope ft/ft 

Corrugated Metal Pipe (n = 0.024) 
Slope ft/ft 

15 0.0023 0.0077 

18 0.0018 0.0060 

21 0.0014 0.0049 

24 0.0012 0.0041 

27 0.0010 0.0035 

30 0.0009 0.0030 

33 0.0008 0.0027 

36 0.0007 0.0024 

39 0.0006 0.0021 

42 0.0006 0.0020 

45 0.0005 0.0018 

48 0.0005 0.0016 

54 0.0004 0.0014 

60 0.0004 0.0012 

66 0.0003 0.0011 

72 0.0003 0.0010 

78 0.0003 0.0009 

84 0.0002 0.0008 

96 0.0002 0.0006 



 iSWMTM Technical Manual Hydraulics 

Streets and Closed Conduits HA-48 
April 2010, Revised 9/2014 

Bernoulli’s Law expressed between points one (1) and two (2) in a closed conduit accounts for all energy 
forms and energy losses.  The general form of the law may be written as: 

 V1
2/2g + p1/v + z1 = V2

2/2g + p2/v + z2 - Hf - ΣHm (1.26) 

 where: 

  Hf = Pipe friction loss, ft 

  ΣHm = Sum of minor or form losses, ft 
 
The calculation of the EGL for the full length of the system is critical to the evaluation of a storm drain. In 
order to develop the EGL it is necessary to calculate all of the losses through the system.  The energy 
equation states that the energy head at any cross section must equal that in any other downstream 
section plus the intervening losses. The intervening losses are typically classified as either friction losses 
or form losses. The friction losses can be calculated using the Manning's Equation. Form losses are 
typically calculated by multiplying the velocity head by a loss coefficient, K.  Various tables and 
calculations exist for developing the value of K depending on the structure being evaluated for loss. 
Knowledge of the location of the EGL is critical to the understanding and estimating the location of the 
hydraulic grade line (HGL).  
 
The hydraulic grade line (HGL) is a line coinciding with the level of flowing water at any point along an 
open channel. In closed conduits flowing under pressure, the hydraulic grade line is the level to which 
water would rise in a vertical tube at any point along the pipe. The hydraulic grade line is used to aid the 
designer in determining the acceptability of a proposed storm drainage system by establishing the 
elevation to which water will rise when the system is operating under design conditions.  
 
HGL, a measure of flow energy, is determined by subtracting the velocity head (V2/2g) from the EGL. 
Energy concepts can be applied to pipe flow as well as open channel flow. Figure 1.20 illustrates the 
energy and hydraulic grade lines for open channel and pressure flow in pipes. 
 
When water is flowing through the pipe and there is a space of air between the top of the water and the 
inside of the pipe, the flow is considered as open channel flow and the HGL is at the water surface. When 
the pipe is flowing full under pressure flow, the HGL will be above the crown of the pipe. When the flow in 
the pipe just reaches the point where the pipe is flowing full, this condition lies in between open channel 
flow and pressure flow. At this condition the pipe is under gravity full flow and the flow is influenced by the 
resistance of the total circumference of the pipe. Under gravity full flow, the HGL coincides with the crown 
of the pipe. 

 

Figure 1.20 Hydraulic and Energy Grade Lines in Pipe Flow 
(HEC 22, 2001) 
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Inlet surcharging and possible access hole lid displacement can occur if the hydraulic grade line rises 
above the ground surface. A design based on open channel conditions must be carefully planned as well, 
including evaluation of the potential for excessive and inadvertent flooding created when a storm event 
larger than the design storm pressurizes the system. As hydraulic calculations are performed, frequent 
verification of the existence of the desired flow condition should be made. Storm drainage systems can 
often alternate between pressure and open channel flow conditions from one section to another.   
 
A detailed procedure for evaluating the energy grade line and the hydraulic grade line for storm drainage 
systems is presented in Section 1.2.11. 
 

Storm Drain Outfalls 

All storm drains have an outlet where flow from the storm drainage system is discharged. The discharge 
point can be a natural river or stream, an existing storm drainage system, or a channel which is either 
existing or proposed for the purpose of conveying the stormwater. The procedure for calculating the 
energy grade line through a storm drainage system begins at the outfall. Therefore, consideration of 
outfall conditions is an important part of storm drain design. 
 
Several aspects of outfall design must be given serious consideration. These include the flowline or invert 
(inside bottom) elevation of the proposed storm drain outlet, tailwater elevations, the need for energy 
dissipation, and the orientation of the outlet structure. 
 
The flowline or invert elevation of the proposed outlet should be equal to or higher than the flowline of 
the outfall. If this is not the case, there may be a need to pump or otherwise lift the water to the elevation 
of the outfall. 
 
The tailwater depth or elevation in the storm drain outfall must be considered carefully.  Evaluation of 
the hydraulic grade line for a storm drainage system begins at the system outfall with the tailwater 
elevation. For most design applications, the tailwater will either be above the crown of the outlet or can be 
considered to be between the crown and critical depth of the outlet. The tailwater may also occur between 
the critical depth and the invert of the outlet. However, the starting point for the hydraulic grade line 
determination should be either the design tailwater elevation or the average of critical depth and the 
height of the storm drain conduit, (dc + D)/2, whichever is greater. 
 
An exception to the above rule would be for a very large outfall with low tailwater where a water surface 
profile calculation would be appropriate to determine the location where the water surface will intersect 
the top of the barrel and full flow calculations can begin. In this case, the downstream water surface 
elevation would be based on critical depth or the design tailwater elevation, whichever was highest. 
 
If the outfall channel is a river or stream, it may be necessary to consider the joint or coincidental 
probability of two hydrologic events occurring at the same time to adequately determine the elevation of 
the tailwater in the receiving stream. The relative independence of the discharge from the storm drainage 
system can be qualitatively evaluated by a comparison of the drainage area of the receiving stream to the 
area of the storm drainage system. For example, if the storm drainage system has a drainage area much 
smaller than that of the receiving stream, the peak discharge from the storm drainage system may be out 
of phase with the peak discharge from the receiving watershed. Table 1.10 provides a comparison of 
discharge frequencies for coincidental occurrence for the 2-, 5-, 10-, 25-, 50-, and flood mitigation design 
storms. This table can be used to establish an appropriate design tailwater elevation for a storm drainage 
system based on the expected coincident storm frequency on the outfall channel. For example, if the 
receiving stream has a drainage area of 200 acres and the storm drainage system has a drainage area of 
2 acres, the ratio of receiving area to storm drainage area is 200 to 2 which equals 100 to 1. From Table 
1.10 and considering a 10-year design storm occurring over both areas, the flow rate in the main stream 
will be equal to that of a five year storm when the drainage system flow rate reaches its 10-year peak flow 
at the outfall. Conversely, when the flow rate in the main channel reaches its 10-year peak flow rate, the 
flow rate from the storm drainage system will have fallen to the 5- year peak flow rate discharge. This is 
because the drainage areas are different sizes, and the time to peak for each drainage area is different. 
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Table 1.10 Frequencies for Coincidental Occurrences 
        (TxDOT, 2002) 

Area ratio  2-year design  5-year design  

 Main Stream  Tributary  Main Stream  Tributary  

10,000:1  1  2  1  5  

 2  1  5  1  

1,000:1  1  2  2  5  

 2  1  5  2  

100:1  2  2  2  5  

 2  2  5  5  

10:1  2  2  5  5  

 2  2  5  5  

1:1  2  2  5  5  

 2  2  5  5  

Area ratio  10-year design  25-year design  

 Main Stream  Tributary  Main Stream  Tributary  

10,000:1  1  10  2  25  

 10  1  25  2  

1,000:1  2  10  5  25  

 10  2  25  5  

100:1  5  10  10  25  

 10  5  25  10  

10:1  10  10  10  25  

 10  10  25  10  

1:1  10  10  25  25  

 10  10  25  25  

Area ratio  50-year design  100-year design  

 Main Stream  Tributary  Main Stream  Tributary  

10,000:1  2  50  2  100  

 50  2  100  2  

1,000:1  5  50  10  100  

 50  5  100  10  

100:1  10  50  25  100  

 50  10  100  25  

10:1  25  50  50  100  

 50  25  100  50  

1:1  50  50  100  100  

 50  50  100  100  

 
There may be instances in which an excessive tailwater causes flow to back up the storm drainage 
system and out of inlets and access holes, creating unexpected and perhaps hazardous flooding 
conditions. The potential for this should be considered. Flap gates placed at the outlet can sometimes 
alleviate this condition; otherwise, it may be necessary to isolate the storm drain from the outfall by use of 
a pump station. 
 



 iSWMTM Technical Manual Hydraulics 

Streets and Closed Conduits HA-51 
April 2010, Revised 9/2014 

Energy dissipation may be required to protect the storm drain outlet. Protection is usually required at the 
outlet to prevent erosion of the outfall bed and banks. Riprap aprons or energy dissipators should be 
provided if high velocities are expected. See Section 4.0 for guidance on design of Energy Dissipation 
Structures. 
 
The orientation of the outfall is another important design consideration. Where practical, the outlet of 
the storm drain should be positioned in the outfall channel so that it is pointed in a downstream direction. 
This will reduce turbulence and the potential for excessive erosion. If the outfall structure can not be 
oriented in a downstream direction, the potential for outlet scour must be considered. For example, where 
a storm drain outfall discharges perpendicular to the direction  of flow of the receiving channel, care must 
be taken to avoid erosion on the opposite channel bank. If erosion potential exists, a channel bank lining 
of riprap or other suitable material should be installed on the bank. Alternatively, an energy dissipator 
structure could be used at the storm drain outlet. 
  

Energy Losses 

Prior to computing the hydraulic grade line, all energy losses in pipe runs and junctions must be 
estimated. In addition to the principal energy involved in overcoming the friction in each conduit run, 
energy (or head) is required to overcome changes in momentum or turbulence at outlets, inlets, bends, 
transitions, junctions, and access holes. The following presents relationships for estimating typical energy 
losses in storm drainage systems. The application of some of these relationships is included in the design 
example in Section 1.2.12. 
 

Pipe Friction Losses 

The major loss in a storm drainage system is the friction or boundary shear loss. The head loss 
due to friction in a pipe is computed as follows: 

 Hf = Sf L (1.27) 
 where: 

  Hf = friction loss, ft 

  Sf = friction slope, ft/ft 

  L = length of pipe, ft 
 
The friction slope in Equation 1.27 is also the slope of the hydraulic gradient for a particular pipe run. As 
indicated by Equation 1.27, the friction loss is simply the hydraulic gradient multiplied by the length of the 
run. Since this design procedure assumes steady uniform flow in open channel flow, the friction slope will 
match the pipe slope for part full flow. Pipe friction losses for full flow can be determined by the use of 
Equation 1.20. 
 

Exit Losses 

The exit loss from a storm drain outlet is a function of the change in velocity at the outlet of the pipe. For a 
sudden expansion such as at an endwall, the exit loss is: 

 Ho = 1.0 [(Vo
2/2g) - (Vd

2/2g)] (1.28) 
 where: 

  Vo = average outlet velocity 

  Vd = channel velocity downstream of outlet 
 
Note that when Vd = 0, as in a reservoir, the exit loss is one velocity head. For part full flow where the 
pipe outlets in a channel with water moving in the same direction as the outlet water, the exit loss may be 
reduced to virtually zero. 
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Bend Losses 

The bend loss coefficient for storm drain design is minor but can be estimated using the following formula 
(AASHTO, 1991): 

 hb = 0.0033 (Δ) (V2/2g) (1.29) 
 where: 

  Δ = angle of curvature in degrees 
 

Transition Losses 

A transition is a location where a conduit or channel changes size. Typically, transitions should be 
avoided and access holes should be used when pipe size increases. However, sometimes transitions are 
unavoidable. Transitions include expansions, contractions, or both. In small storm drains, transitions may 
be confined within access holes. However, in larger storm drains or when a specific need arises, 
transitions may occur within pipe runs as illustrated in Figures 1.16 and 1.21. 
 
Energy losses in expansions or contractions in non-pressure flow can be expressed in terms of the kinetic 
energy at the two ends. Contraction and expansion losses can be evaluated with Equations 1.30 and 1.31 
respectively. 
 

 Hc=Kc [V1
2/(2g)- V2

2/(2g)] (1.30) 
 He=Ke [V1

2/(2g)- V2
2/(2g)] (1.31) 

 where: 

  Ke = expansion coefficient 

  Kc = contraction coefficient (0.5 Ke) 

  V1 = velocity upstream of transition 

  V2 = velocity downstream of transition 

  g = acceleration due to gravity (32.2 ft/s2) 
 

 
Figure 1.21 Angle of Cone for Pipe Diameter Changes 

 
For gradual contractions, it has been observed that Kc = 0.5 Ke. Typical values of Ke for gradual 
enlargements are tabulated in Table 1.11a. Typical values of Kc for sudden contractions are tabulated in 
Table 1.11b. The angle of the cone that forms the transition is defined in Figure 1.21.  
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Table 1.11a Typical Values for Ke for Gradual Enlargement of Pipes in Non-Pressure Flow 

D2/D1 
Angle of Cone 

10o 20o 45o 60o 90o 120o 180o 

1.5 0.17 0.40 1.06 1.21 1.14 1.07 1.00 

3 0.17 0.40 0.86 1.02 1.06 1.04 1.00 

D2/D1= Ratio of Diameter of larger pipe to smaller pipe (ASCE, 1992) 

 
 
 
 
 
 
 
 
 
 
 
 
For storm drain pipes functioning under pressure flow, the loss coefficients listed in Tables 1.12 and 1.13 
can be used with Equation 1.32 for sudden and gradual expansions respectively. For sudden contractions 
in pipes with pressure flow, the loss coefficients listed in Table 1.14 can be used in conjunction with 
Equation 1.33 (ASCE, 1992). 

 He=Ke (V1
2/2g) (1.32) 

 Hc=Kc (V2
2/2g) (1.33) 

 where: 

  Ke = expansion coefficient (Tables 1.13 and 1.14) 

  Kc = contraction coefficient (Table 1.15) 

  V1 = velocity upstream of transition 

  V2 = velocity downstream of transition 

  g = acceleration due to gravity 32.2 ft/s2 
 
 

Table 1.11b Typical Values of Kc for Sudden Pipe Contractions 

D2/D1 Kc 

0.2 0.5 

0.4 0.4 

0.6 0.3 

0.8 0.1 

1 0 

D2/D1= Ratio of Diameter of smaller pipe to larger pipe (ASCE, 1992) 
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Table 1.12 Values of Ke for Determining Loss of Head due to Sudden Enlargement in Pipes 

D2/D1 
Velocity, V1, in feet Per Second 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 15.0 20.0 30.0 40.0 

1.2 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.08 

1.4 0.26 0.26 0.25 0.24 0.24 0.24 0.24 0.23 0.23 0.22 0.22 0.21 0.20 

1.6 0.40 0.39 0.38 0.37 0.37 0.36 0.36 0.35 0.35 0.34 0.33 0.32 0.32 

1.8 0.51 0.49 0.48 0.47 0.47 0.46 0.46 0.45 0.44 0.43 0.42 0.41 0.40 

2.0 0.60 0.58 0.56 0.55 0.55 0.54 0.53 0.52 0.52 0.51 0.50 0.48 0.47 

2.5 0.74 0.72 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.60 0.58 

3.0 0.83 0.80 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.70 0.69 0.67 0.65 

4.0 0.92 0.89 0.87 0.85 0.84 0.83 0.82 0.80 0.79 0.78 0.76 0.74 0.72 

5.0 0.96 0.93 0.91 0.89 0.88 0.87 0.86 0.84 0.83 0.82 0.80 0.77 0.75 

10.0 1.00 0.99 0.96 0.95 0.93 0.92 0.91 0.89 0.88 0.86 0.84 0.82 0.80 

∞ 1.00 1.00 0.98 0.96 0.95 0.94 0.93 0.91 0.90 0.88 0.86 0.83 0.81 

D2/D1 = ratio of diameter of larger pipe to smaller pipe 

V1      = velocity in smaller pipe (upstream of transition) 

(ASCE, 1992) 

 

Table 1.13 Values of Ke for Determining Loss of Head due to Gradual Enlargement in Pipes 

D2/D1 
Angle of Cone 

2o 6o 10o 15o 20o 25o 30o 35o 40o 50o 60o 

1.1 0.01 0.01 0.03 0.05 0.10 0.13 0.16 0.18 0.19 0.21 0.23 

1.2 0.02 0.02 0.04 0.09 0.16 0.21 0.25 0.29 0.31 0.35 0.37 

1.4 0.02 0.03 0.06 0.12 0.23 0.30 0.36 0.41 0.44 0.50 0.53 

1.6 0.03 0.04 0.07 0.14 0.26 0.35 0.42 0.47 0.51 0.57 0.61 

1.8 0.03 0.04 0.07 0.15 0.28 0.37 0.44 0.50 0.54 0.61 0.65 

2.0 0.03 0.04 0.07 0.16 0.29 0.38 0.46 0.52 0.56 0.63 0.68 

2.5 0.03 0.04 0.08 0.16 0.30 0.39 0.48 0.54 0.58 0.65 0.70 

3.0 0.03 0.04 0.08 0.16 0.31 0.40 0.48 0.55 0.59 0.66 0.71 

 ∞ 0.03 0.05 0.08 0.16 0.31 0.40 0.49 0.56 0.60 0.67 0.72 

D2/D1 = ratio of diameter of larger pipe to smaller pipe 

Angle of cone is the angle in degrees between the sides of the tapering section 

(ASCE, 1992) 

 

Table 1.14 Values of Ke for Determining Loss of Head due to Sudden Contraction 

D2/D1 
Velocity, V2, in feet Per Second 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 15.0 20.0 30.0 40.0 

1.1 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.06 

1.2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.11 0.11 

1.4 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.19 0.20 

1.6 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.24 

1.8 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.32 0.32 0.32 0.29 0.27 

2.0 0.38 0.38 0.37 0.37 0.37 0.37 0.36 0.36 0.35 0.34 0.33 0.31 0.29 

2.2 0.40 0.40 0.40 0.39 0.39 0.39 0.39 0.38 0.37 0.37 0.35 0.33 0.30 

2.5 0.42 0.42 0.42 0.41 0.41 0.41 0.40 0.40 0.39 0.38 0.37 0.34 0.31 
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Table 1.14 Values of Ke for Determining Loss of Head due to Sudden Contraction 

D2/D1 
Velocity, V2, in feet Per Second 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 15.0 20.0 30.0 40.0 

3.0 0.44 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.41 0.40 0.39 0.36 0.33 

4.0 0.47 0.46 0.46 0.46 0.45 0.45 0.45 0.44 0.43 0.42 0.41 0.37 0.34 

5.0 0.48 0.48 0.47 0.47 0.47 0.46 0.46 0.45 0.45 0.44 0.42 0.38 0.35 

10.0 0.49 0.48 0.48 0.48 0.48 0.47 0.47 0.46 0.46 0.45 0.43 0.40 0.36 

 ∞  0.49 0.49 0.48 0.48 0.48 0.47 0.47 0.47 0.46 0.45 0.44 0.41 0.38 

D2/D1 = ratio of diameter of larger pipe to smaller pipe 
V2      = velocity in smaller pipe (downstream of transition) 

(ASCE, 1992) 

 

Junction Losses 

A pipe junction is the connection of a lateral pipe to a larger trunk pipe without the use of an access hole 
structure. The minor loss equation for a pipe junction is a form of the momentum equation as follows: 

 Hj=[((Qo Vo) - (Qi Vi) - (Ql Vlcosθ)) / (0.5g(Ao+Ai))] + hi- ho (1.34) 
  where: 

  Hj = junction loss (ft) 

  Qo, Qi, Ql = outlet, inlet, and lateral flows, respectively (ft3/s) 

  Vo, Vi, Vl = outlet, inlet, and lateral velocities, respectively (ft/s) 

  ho, hi = outlet and inlet velocity heads (ft) 

  Ao, A i = outlet and inlet cross-sectional areas (ft2) 

  θ = angle between the inflow and outflow pipes (Figure 1.22) 
 

Inlet and Access Hole Losses - Preliminary Estimate 

The initial layout of a storm drain system begins at the upstream end of the system. The designer must 
estimate sizes and establish preliminary elevations as the design progresses downstream. An 
approximate method for estimating losses across an access hole is provided in this section.  This is a 
preliminary estimate only and will not be used when the energy grade line calculations are made. 
Methods defined in later in this section will be used to calculate the losses across an access hole when 

the energy grade line is being established. 

 
The approximate method for computing losses at access holes or inlet structures involves multiplying the 
velocity head of the outflow pipe by a coefficient as represented in Equation 1.35.  Applicable coefficients 
(Kah) are tabulated in Table 1.15. This method can be used to estimate the initial pipe crown drop across 
an access hole or inlet structure to offset energy losses at the structure. The crown drop is then used to 
establish the appropriate pipe invert elevations. However, this method is used only in the preliminary 
design process and should not be used in the EGL calculations. 

 Hah=Kah (Vo
2/2g) (1.35) 
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Table 1.15 Head Loss Coefficients 
       (FHA, Revised 1993) 

Structure Configuration Kah 

Inlet-straight run 0.5 

Inlet-angled through 

90o 1.5 

60o 1.25 

45o 1.1 

22.5o 0.7 

Manhole-straight run 0.15 

Manhole-angled through 

90o 1 

60o 0.85 

45o 0.75 

22.5o 0.45 

 

Inlet and Access Hole Losses for EGL Calculations - Energy-Loss Methodology 

Various methodologies have been advanced for evaluating losses at access holes and other flow 
junctions. The energy loss method presented in this section is based on laboratory research and does not 
apply when the inflow pipe invert is above the water level in the access hole. 

 

Figure 1.22  Head Loss Coefficients  
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The energy loss encountered going from one pipe to another through an access hole is commonly 
represented as being proportional to the velocity head of the outlet pipe. Using K to represent the 
constant of proportionality, the energy loss, Hah, is approximated by Equation 1.36.  Experimental studies 
have determined that the K value can be approximated by the relationship in Equation 1.37 when the 
inflow pipe invert is below the water level in the access hole. 
 

 Hah = K (Vo
2/2g) (1.36) 

 K = KO CD Cd CQ Cp CB (1.37) 
 where: 

  K = adjusted loss coefficient 

  Ko = initial head loss coefficient based on relative access hole size 

  CD = correction factor for pipe diameter (pressure flow only) 

  Cd = correction factor for flow depth 

  CQ = correction factor for relative flow 

  Cp = correction factor for plunging flow 

  CB = correction factor for benching 

  Vo = velocity of outlet pipe 
 
For cases where the inflow pipe invert is above the access hole water level, the outflow pipe will function 
as a culvert, and the access hole loss and the access hole HGL can be computed using procedures 
found in Hydraulic Design of Highway Culverts (HDS-5, 1985). If the outflow pipe is flowing full or partially 
full under outlet control, the access hole loss (due to flow contraction into the outflow pipe) can be 
computed by setting K in Equation 1.36 to Ke as reported in Table 1.16. If the outflow pipe is flowing under 
inlet control, the water depth in the access hole should be computed using the inlet control nomographs in 
HDS- 5 (for example see Figure 3.31a). 
 
The initial head loss coefficient, Ko in Equation 1.38, is estimated as a function of the relative access 
hole size and the angle of deflection between the inflow and outflow pipes as represented in Equation 
1.6. This deflection angle is represented in Figure 1.22. 

 Ko = 0.1 (b/Do)(1-sin θ) + 1.4(b/Do)0.15 sin θ (1.38) 
 where:  

  θ = angle between the inflow and outflow pipes (Figure 1.22) 

  b = access hole or junction diameter 

  Do = outlet pipe diameter 
 
A change in head loss due to differences in pipe diameter is only significant in pressure flow situations 
when the depth in the access hole to outlet pipe diameter ratio, daho/Do, is greater than 3.2. In these cases 
a correction factor for pipe diameter, CD, is computed using Equation 1.39. Otherwise CD is set equal to 1. 

 CD=(Do/Di)3 (1.39) 
 where: 

  Do = outgoing pipe diameter 

  Di = inflowing pipe diameter 
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Table 1.16 Coefficients for Culverts; Outlet Control, Full, or Partly Full 

Type of Structure and Design of Entrance Coefficient Ke 

Pipe, Concrete   

  Projecting from fill, socket end (groove-end) . . . . . . .  0.2 

  Projecting from fill, sq. cut end . . . . . . . . . . . . . . . . . .  0.5 

  Headwall or headwall and wingwalls   

  Socket end of pipe (groove-end) . . . . . . . . . . .  0.2 

  Square-edge  . . . . . . . . . . . . . . . . . . . . . . . . . .  0.5 

  Rounded (radius = 1/12 D) . . . . . . . . . . . . . . . .  0.2 

  Mitered to conform to fill slope . . . . . . . . . . . . . . . . . .  0.7 

  *End-section conforming to fill slope . . . . . . . . . . . . .  0.5 

  Beveled edges, 33.7o or 45o levels . . . . . . . . . . . . . .  0.2 

  Side-or slope-tapered inlet . . . . . . . . . . . . . . . . . . . . .  0.2 

Pipe, or Pipe-Arch, Corrugated Metal   

  Project from fill (no headwall) . . . . . . . . . . . . . . . . . . .  0.9 

  Headwall or headwall and wingwalls square-edge . . .  0.5 

  
Mitered to conform to fill slope, paved or unpaved 
slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 

  *End-section conforming to fill slope . . . . . . . . . . . . .  0.5 

  Beveled edges, 33.7o or 45o bevels . . . . . . . . . . . . .  0.2 

  Side-or slope-tapered inlet . . . . . . . . . . . . . . . . . . . . .  0.2 

Box, Reinforced Concrete  

  Headwall parallel to embankment (no wingwalls)   

   Square-edged on 3 edges 0.5 

   
Rounded on 3 edges to radius of 1/12 barrel 
dimension, or beveled edges on 3 sides . . . . .  0.2  

  Wingwalls at 30o to 75o to barrel   

   Square-edged at crown . . . . . . . . . . . . . . . . . .  0.4 

   
Crown edge rounded to radius of 1/2 barrel 
dimension, or beveled top edge . . . . . . . . . . .   0.2  

  Wingwall at 10o to 25o to barrel   

   Square-edged at crown . . . . . . . . . . . . . . . . . .  0.05 

   Wingwalls parallel (extension of sides)   

   Square-edged at crown . . . . . . . . . . . . . . . . . .  0.7 

   Side-or slope-tapered inlet . . . . . . . . . . . . . . .  0.2 

*Note: "End-section conforming to fill slope," made of either metal or concrete, are the 
sections commonly available from manufacturers. From limited hydraulic tests they are 
equivalent in operation to a headwall in both inlet and outlet control. Some end sections, 
incorporating a closed taper in their design have a superior hydraulic performance. 
(Source: Reference HDS No.5, 1985) 
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Figure 1.23 Relative flow effect 
 
The correction factor for flow depth, Cd, is significant only in cases of free surface flow or low pressures, 
when the daho/Do ratio is less than 3.2. In cases where this ratio is greater than 3.2, Cd is set equal to 1. 
To determine the applicability of this factor, the water depth in the access hole is approximated as the 
level of the hydraulic grade line at the upstream end of the outlet pipe. The correction factor is calculated 
using Equation 1.40. 

 CD = 0.5(daho/Do)0.6 (1.40) 
 where: 

  daho = water depth in access hole above the outlet pipe invert 

  Do = outlet pipe diameter 
 
The correction factor for relative flow, CQ, is a function of the angle of the incoming flow as well as the 
percentage of flow coming in through the pipe of interest versus other incoming pipes. It is computed 
using Equation 1.41. The correction factor is only applied to situations where there are 3 or more pipes 
entering the structure at approximately the same elevation. Otherwise, the value of CQ is equal to 1.0. 

 CQ = (1- 2sin θ ) [1-(Qi / Qo)]0.75 + 1 (1.41) 

 where: 

  CQ = correction factor for relative flow 

  θ = the angle between the inflow and outflow pipes (Figure 1.22) 

  Qi = flow in the inflow pipe 

  Qo = flow in the outflow pipe 
 
As can be seen from Equation 1.41, CQ is a function of the angle of the incoming flow as well as the ratio 
of inflow coming through the pipe of interest and the total flow out of the structure. To illustrate this effect, 
consider the access hole shown in Figure 1.23 and assume the following two cases to determine the 
correction factor of pipe number 2 entering the access hole. For each of the two cases, the angle 
between the inflow pipe number 1 and the outflow pipe, θ, is 180o. 

Case 1: 
Q1 = 3 ft3/s 
Q2 = 1 ft3/s 
Q3 = 4 ft3/s 

Using Equation 1.41, 
CQ = (1 - 2 sin θ)(1 - Qi/Qo)0.75 + 1 
CQ = (1 - 2 sin 180o)(1 - 3/4)0.75 + 1 
CQ = 1.35 

Case 2: 
Q1 = 1.0 ft3/s 
Q2 = 3.0 ft3/s 
Q3 = 4.0 ft3/s 

Using Equation 1.41, 
CQ = (1 - 2 sin θ)(1 - Qi/Qo)0.75 + 1 
CQ = (1 - 2 sin 180o)(1 - 1/4)0.75 + 1 
CQ = 1.81 
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The correction factor for plunging flow, Cp, is calculated using Equation 1.42. This correction factor 
corresponds to the effect another inflow pipe, plunging into the access hole, has on the inflow pipe for 
which the head loss is being calculated. Using the notations in Figure 1.23, Cp is calculated for pipe #1 
when pipe #2 discharges plunging flow. The correction factor is only applied when h > daho. Additionally, 
the correction factor is only applied when a higher elevation flow plunges into an access hole that has 
both an inflow line and an outflow in the bottom of the access hole. Otherwise, the value of Cp is equal to 
1.0.  Flows from a grate inlet or a curb opening inlet are considered to be plunging flow and the losses 
would be computed using Equation 1.42. 

 Cp = 1+ 0.2(h/Do) [(h - daho)/Do] (1.42) 
 where: 

  Cp = correction for plunging flow 

  h = vertical distance of plunging flow from the flow line of the higher elevation inlet pipe to 
the center of the outflow pipe 

  Do = outlet pipe diameter 

  daho = water depth in access hole relative to the outlet pipe invert 
 
The correction for benching in the access hole, CB, is obtained from Table 1.17. Figure 1.24 illustrates 
benching methods listed in Table 1.17. Benching tends to direct flow through the access hole, resulting in 
a reduction in head loss. For flow depths between the submerged and unsubmerged conditions, a linear 
interpolation is performed. 
 

Table 1.17 Correction for Benching 
       (HEC 22, 2001) 

Bench Type 
Correction Factors, CB 

Submerged* Unsubmerged** 

Flat or Depressed Floor 1.00 1.00 

Half Bench 0.95 0.15 

Full Bench  0.75 0.07 

 *pressure flow, daho/Do ≥ 3.2 

**free surface flow, daho/Do ≤ 1.0 

 
In summary, to estimate the head loss through an access hole from the outflow pipe to a particular inflow 
pipe using the energy-loss method, multiply the above correction factors together to get the head loss 
coefficient, K. This coefficient is then multiplied by the velocity head in the outflow pipe to estimate the 
minor loss for the connection. 
 

Composite Energy Loss Method 

The Energy Loss Method described in earlier in the section resulted from preliminary experimental and 
analytical techniques that focused on relatively simple access hole layout and a small number of inflow 
pipes. A more suitable method is available to analyze complex access holes that have, for example, 
many inflow pipes. This complex method, referred to as the Composite Energy Loss Method, is 
implemented in the FHWA storm drain analysis and design package HYDRA (GKY, 1994). Details on the 
method are described in the HYDRA program technical documentation and the associated research 
report (Chang, et. al., 1994).  
 
This complex minor loss computation approach focuses on the calculation of the energy loss from the 
inflow pipes to the outflow pipe (Chang, et. al., 1994).  The methodology can be applied by determining 
the estimated energy loss through an access hole given a set of physical and hydraulic parameters. 
Computation of the energy loss allows determination and analysis of the energy gradeline and hydraulic 
gradeline in pipes upstream of the access hole.  This methodology only applies to subcritical flow in 
pipes. 
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Figure 1.24 Access to Benching Methods 
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Preliminary Design Procedure 

The preliminary design of storm drains can be accomplished by using the following steps and the storm 
drain computation sheet provided in Figure 1.25. This procedure assumes that each storm drain will be 
initially designed to flow full under gravity conditions. The designer must recognize that when the steps in 
this section are complete, the design is only preliminary.  Final design is accomplished after the energy 
grade line and hydraulic grade line computations have been completed. 
 
Step 1  Prepare a working plan layout and profile of the storm drainage system establishing the 

following design information: 

 a.  Location of storm drains. 

 b.  Direction of flow. 

 c.  Location of access holes and other structures. 

 d.  Number or label assigned to each structure. 

 e.  Location of all existing utilities (water, sewer, gas, underground cables, 
  etc.). 
 
Step 2 Determine the following hydrologic parameters for the drainage areas tributary to each inlet to 

the storm drainage system: 

 a.  Drainage areas. 

 b. Runoff coefficients. 

 c.  Travel time 
 
Step 3  Using the information generated in Steps 1 and 2, complete the following information on the 

design form for each run of pipe starting with the upstream most storm drain run: 

 a.  "From" and "To" stations, Columns 1 and 2b, "Length" of run, Column 3 

 b.  "Length" of run, Column 3 

 c.  "Inc." drainage area, Column 4 

The incremental drainage area tributary to the inlet at the upstream end of the storm 
drain run under consideration. 

 d.  "C," Column 6 

The runoff coefficient for the drainage area tributary to the inlet at the upstream end of 
the storm drain run under consideration. In some cases a composite runoff coefficient will 
need to be computed. 

 e.  "Inlet" time of concentration, Column 9 

The time required for water to travel from the hydraulically most distant point of the 
drainage area to the inlet at the upstream end of the storm drain run under consideration. 

 f.  "System" time of concentration, Column 10 

The time for water to travel from the most remote point in the storm drainage system to 
the upstream end of the storm drain run under consideration. For the upstream most 
storm drain run this value will be the same as the value in Column 9. For all other pipe 
runs this value is computed by adding the "System" time of concentration (Column 10) 
and the "Section" time of concentration (Column 17) from the previous run together to get 
the system time of concentration at the upstream end of the section under consideration 
(See Section 1.2.4 of the Hydrology Technical Manual for a general discussion of times 
of concentration). 

 
Step 4  Using the information from Step 3, compute the following: 

 a.  "TOTAL" area, Column 5 
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Add the incremental area in Column 4 to the previous sections total area and place this 
value in Column 5. 

b. "INC." area x "C," Column 7 

Multiply the drainage area in Column 4 by the runoff coefficient in Column 6. Put the 
product, CA, in Column 7. 

c. "TOTAL" area x "C," Column 8 

Add the value in Column 7 to the value in Column 8 for the previous storm drain run and 
put this value in Column 8. 

 d. "I," Column 11 

Using the larger of the two times of concentration in Columns 9 and 10, and an Intensity-
Duration-Frequency (IDF) curve, determine the rainfall intensity, I, and place this value in 
Column 11. 

 e.  "TOTAL Q," Column 12 

Calculate the discharge as the product of Columns 8 and 11. Place this value in Column 
12. 

 f.  "SLOPE," Column 21 

Place the pipe slope value in Column 21. The pipe slope will be approximately the slope 
of the finished roadway. The slope can be modified as needed. 

g. "PIPE DIA.," Column 13 

Size the pipe using relationships and charts presented in this section to convey the 
discharge by varying the slope and pipe size as necessary. The storm drain should be 
sized as close as possible to a full gravity flow. Since most calculated sizes will not be 
available, a nominal size will be used. The designer will decide whether to go to the next 
larger size and have part full flow or whether to go to the next smaller size and have 
pressure flow. 

 h.  "CAPACITY FULL," Column 14 

Compute the full flow capacity of the selected pipe using Equation 1.18 and put this 
information in Column 14. 

 i.  "VELOCITIES," Columns 15 and 16 

Compute the full flow and design flow velocities (if different) in the conduit and place 
these values in Columns 15 and 16. If the pipe is flowing full, the velocities can be 
determined from V = Q/A, Equations 1.17 and 1.18.  If the pipe is not flowing full, the 
velocity can be determined from Figure 1.19a. 

j. "SECTION TIME," Column 17 

Calculate the travel time in the pipe section by dividing the pipe length (Column 3) by the 
design flow velocity (Column 16). Place this value in Column 17. 

 k.  "CROWN DROP," Column 20 

Calculate an approximate crown drop at the structure to off-set potential structure energy 
losses using Equation 1.33. Place this value in Column 20. 

 l.  "INVERT ELEV.," Columns 18 and 19 

Compute the pipe inverts at the upper (U/S) and lower (D/S) ends of this section of pipe, 
including any pipe size changes that occurred along the section.  

 
Step 5  Repeat steps 3 and 4 for all pipe runs to the storm drain outlet. Use equations and 

nomographs to accomplish the design effort. 
 
Step 6  Check the design by calculating the energy grade line and hydraulic grade line as described 

in this section. 
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Figure 1.25 Preliminary Storm Drain Computation Sheet 
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1.2.11 Energy Grade Line Evaluation Procedure 
This section presents a step-by-step procedure for manual calculation of the energy grade line (EGL) and 
the hydraulic grade line (HGL) using the energy loss method. For most storm drainage systems, computer 
methods such as HYDRA (GKY, 1994) are the most efficient means of evaluating the EGL and the HGL. 
However, it is important that the designer understand the analysis process so that he can better interpret 
the output from computer generated storm drain designs. 
 
Figure 1.26 provides a sketch illustrating use of the two grade lines in developing a storm drainage 
system. The following step-by-step procedure can be used to manually compute the EGL and HGL. The 
computation tables in Figure 1.27 and Figure 1.28 can be used to document the procedure outlined 
below. 
 
Before outlining the computational steps in the procedure, a comment relative to the organization of data 
on the form is appropriate. In general, a line will contain the information on a specific structure and the 
line downstream from the structure. As the table is started, the first two lines may be unique. The first line 
will contain information about the outlet conditions. This may be a pool elevation or information on a 
known downstream system. The second line will be used to define the conditions right at the end of the 
last conduit. Following these first two lines the procedure becomes more general. A single line on the 
computation sheet is used for each junction or structure and its associated outlet pipe. For example, data 
for the first structure immediately upstream of the outflow pipe and the outflow pipe would be tabulated in 
the third full line of the computation sheet (lines may be skipped on the form for clarity). Table A (Figure 
1.27) is used to calculate the HGL and EGL elevations while Table B (Figure 1.28) is used to calculate 
the pipe losses and structure losses. Values obtained in table B are transferred to table A for use during 
the design procedure. In the description of the computation procedures, a column number will be followed 
by a letter A or B to indicate the appropriate table to be used. 
 
EGL computations begin at the outfall and are worked upstream taking each junction into consideration. 
Many storm drain systems are designed to function in a subcritical flow regime. In subcritical flow, pipe 
and access hole losses are summed to determine the upstream EGL levels. If supercritical flow occurs, 
pipe and access losses are not carried upstream. When a storm drain section is identified as being 
supercritical, the designer should advance to the next upstream pipe section to determine its flow regime. 
This process continues until the storm drain system returns to a subcritical flow regime. 

 

Figure 1.26 Energy and Hydraulic Grade Line Illustration 
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The EGL computational procedure follows: 
 
Step 1  The first line of Table A includes information on the system beyond the end of the conduit 

system. Define this as the stream, pool, existing system, etc. in column 1A. Determine the 
EGL and HGL for the downstream receiving system. If this is a natural body of water, the 
HGL will be at the water surface. The EGL will also be at the water surface if no velocity is 
assumed or will be a velocity head above the HGL if there is a velocity in the water body. If 
the new system is being connected to an existing storm drain system, the EGL and the HGL 
will be that of the receiving system. Enter the HGL in Column 14A and the EGL in Column 
10A of the first line on the computation sheet. 

 
Step 2  Identify the structure number at the outfall (this may be just the end of the conduit, but it 

needs a structure number), the top of conduit (TOC) elevation at the outfall end, and the 
surface elevation at the outfall end of the conduit. Place these values in Columns 1A, 15A, 
and 16A respectively. Also add the structure number in Col.1B. 

 
Step 3  Determine the EGL just upstream of the structure identified in Step 2. Several different cases 

exist as defined below when the conduit is flowing full:  
 

Case 1: If the TW at the conduit outlet is greater than (dc + D)/2, the EGL will be the TW 
elevation plus the velocity head for the conduit flow conditions. 

 
Case 2: If the TW at the conduit outlet is less than (dc + D)/2, the EGL will be the HGL plus 
the velocity head for the conduit flow conditions. The equivalent hydraulic grade line, EHGL, 
will be the invert plus (dc + D)/2. 
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Figure 1.27 Energy Grade Line Computation Sheet - Table A 
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Figure 1.28 Energy Grade Line Computation Sheet - Table B 
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The velocity head needed in either Case 1 or 2 will be calculated in the next steps, so it may 
be helpful to complete Step 4 and work Step 5 to the point where velocity head (Col. 7A) is 
determined and then come back and finish this step. Put the EGL in Column 13A. 

 
Note: The values for dc for circular pipes can be determined from Figure 1.19b. Charts for 

other conduits or other geometric shapes can be found in Hydraulic Design of Highway 
Culverts, HDS-5, and cannot be greater than the height of the conduit. 

 
Step 4  Identify the structure ID for the junction immediately upstream of the outflow conduit (for the 

first conduit) or immediately upstream of the last structure (if working with subsequent lines) 
and enter this value in Columns 1A and 1B of the next line on the computation sheets. Enter 
the conduit diameter (D) in column 2A, the design discharge (Q) in Column 3A, and the 
conduit length (L) in Column 4A. 

 
Step 5  If the barrel flows full, enter the full flow velocity from continuity in Column 5A and the velocity 

head (V2/2g) in column 7A. Put “full” in Column 6a and not applicable (n/a) in Column 6b of 
Table A. Continue with Step 6. If the barrel flows only partially full, continue with Step 5A. 

 
Note: If the pipe is flowing full because of high tailwater or because the pipe has reached its 

capacity for the existing conditions, the velocity will be computed based on continuity 
using the design flow and the full cross sectional area. Do not use the full flow velocity 
determined in Column 15 of the Preliminary Storm Drain Computation Form for part-full 
flow conditions. For part-full conditions discussed in Step 5, the calculations in the 
preliminary form may be helpful.  Actual flow velocities need to be used in the 
EGL/HGL calculations. 

 
Step 5A Part full flow: Using the hydraulic elements graph in Figure 1.19a with the ratio of part full to 

full flow (values from the preliminary storm drain computation form), compute the depth and 
velocity of flow in the conduit. Enter these values in Column 6a and 5 respectively of Table A. 
Compute the velocity head (V2/2g) and place in Column 7A. 

 
Step 5B Compute critical depth for the conduit using Figure 1.19b. If the conduit is not circular, see 

HDS-5 for additional charts. Enter this value in Column 6b of Table A. 
 

Step 5C  Compare the flow depth in Column 6a (Table A) with the critical depth in Column 6b (Table A) 
to determine the flow state in the conduit. If the flow depth in Column 6a is greater than the 
critical depth in Column 6b, the flow is subcritical, continue with Step 6. If the flow depth in 
Column 6a is less than or equal to the critical depth in Column 6b, the flow is supercritical, 
continue with Step 5D. In either case, remember that the EGL must be higher upstream for 
flow to occur. If after checking for super critical flow in the upstream section of pipe, assure 
that the EGL is higher in the pipe than in the structure. 

 
Step 5D  Pipe losses in a supercritical pipe section are not carried upstream. Therefore, enter a zero 

(0) in Column 7B for this structure. 
 

Step 5E  Enter the structure ID for the next upstream structure on the next line in Columns 1A and 1B. 
Enter the pipe diameter (D), discharge (Q), and conduit length (L) in Columns 2A, 3A, and 4A 
respectively of the same line. 

 
Note: After a downstream pipe has been determined to flow in supercritical flow, it is 

necessary to check each succeeding upstream pipe for the type of flow that exists. This 
is done by calculating normal depth and critical depth for each pipe. If normal depth is 
less than the diameter of the pipe, the flow will be open channel flow and the critical 
depth calculation can be used to determine whether the flow is sub or supercritical. If 
the flow line elevation through an access hole drops enough that the invert of the 
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upstream pipe is not inundated by the flow in the downstream pipe, the designer goes 
back to Step1A and begins a new design as if the downstream section did not exist. 

 
Step 5F  Compute normal depth for the conduit using Figure 1.19a and critical depth using Figure 

1.19b. If the conduit is not circular see HDS-5 for additional charts. Enter these values in 
Columns 6A and 6b of Table A.  

 
Step 5G  If the pipe barrel flows full, enter the full flow velocity from continuity in Column 5A and the 

velocity head (V2/2g) in Column 7A. Go to Step 3, Case 2 to determine the EGL at the outlet 
end of the pipe. Put this value in Column 10A and go to Step 6. For part full flow, continue 
with Step 5H. 

 
Step 5H  Part full flow: Compute the velocity of flow in the conduit and enter this value in Column 5A. 

Compute the velocity head (V2/2g) and place in Column 7A.  
 

Step 5I Compare the flow depth in Column 6a with the critical depth in Column 6b to determine the 
flow state in the conduit. If the flow depth in Column 6a is greater than the critical depth in 
Column 6b, the flow is subcritical, continue with Step 5J. If the flow depth in Column 6a is 
less than or equal to the critical depth in Column 6b, the flow is supercritical, continue with 
Step 5K. 

 
Step 5J Subcritical flow upstream: Compute EGLo at the outlet of the previous structure as the outlet 

invert plus the sum of the outlet pipe flow depth and the velocity head. Place this value in 
Column 10A of the appropriate structure and go to Step 9. 

 
Step 5K  Supercritical flow upstream: Access hole losses do not apply when the flow in two (2) 

successive pipes is supercritical. Place zeros (0) in Columns 11A, 12A, and 15B of the 
intermediate structure (previous line). The HGL at the structure is equal to the pipe invert 
elevation plus the flow depth. Check the invert elevations and the flow depths both upstream 
and downstream of the structure to determine where the highest HGL exists. The highest 
value should be placed in Column 14A of the previous structure line. Perform Steps 20 and 
21 and then repeat Steps 5E through 5K until the flow regime returns to subcritical. If the next 
upstream structure is end-of-line, skip to step 10b then perform Steps 20, 21, and 24. 

 
Step 6  Compute the friction slope (Sf) for the pipe using Equation 1.19 divided by L[Sf = Hf/L = [185 

n2 (V2/2g)]/D4/3] for a pipe flowing full. Enter this value in Column 8A of the current line. If full 
flow does not exist, set the friction slope equal to the pipe slope. 

 
Step 7  Compute the friction loss (Hf) by multiplying the length (L) in Column 4A by the friction slope 

(Sf) in Column 8A and enter this value in Column 2B. Compute other losses along the pipe 
run such as bend losses (hb), transition contraction (Hc) and expansion (He) losses, and 
junction losses (Hj) using Equations 1.29 through 1.34 and place the values in Columns 3B, 
4B, 5B, and 6B, respectively. Add the values in 2B, 3B, 4B, 5B, and 6B and place the total in 
Column 7B and 9A. 

 
Step 8  Compute the energy grade line value at the outlet of the structure (EGLo) as the EGLi 

elevation from the previous structure (Column 13A) plus the total pipe losses (Column 9A). 
Enter the EGLo in Column 10A. 

 
Step 9  Estimate the depth of water in the access hole (estimated as the depth from the outlet pipe 

invert to the hydraulic grade line in the pipe at the outlet). Computed as EGLo (Column 10A) 
minus the pipe velocity head in Column 7A minus the pipe invert elevation (from the 
preliminary storm drain computation form). Enter this value in Column 8B. If supercritical flow 
exists in this structure, leave this value blank and skip to Step 5E. 
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Step 10 If the inflow storm drain invert is submerged by the water level in the access hole, compute 
access hole losses using Equations 1.36 and 1.37. Start by computing the initial structure 
head loss coefficient, Ko, based on relative access hole size. Enter this value in Column 9B. 
Continue with Step 11. If the inflow storm drain invert is not submerged by the water level in 
the access hole, compute the head in the access hole using culvert techniques from HDS-5 
as follows: 

  
 a. If the structure outflow pipe is flowing full or partially full under outlet control, compute the 

access hole loss by setting K in 1.35 to Ke as reported in Table 1.15. Enter this value in 
Column 15B and 11A, continue with Step 17. Add a note on Table A indicating that this is 
a drop structure. 

 
 b. If the outflow pipe functions under inlet control, compute the depth in the access hole 

(HGL) using Chart 28 or 29. If the storm conduit shape is other than circular, select the 
appropriate inlet control nomograph from HDS-5. Add these values to the access hole 
invert to determine the HGL. Since the velocity in the access hole is negligible, the EGL 
and HGL are the same. Enter HGL in Col.14A and EGL in Col.13A. Add a note on Table 
A indicating that this is a drop structure. Go to Step 20. 

 
Step 11 Using Equation 1.39 compute the correction factor for pipe diameter, CD, and enter this value 

in Column 10B. Note, this factor is only significant in cases where the daho/Do ratio is greater 
than 3.2.  

 
Step 12  Using Equation 1.40 compute the correction factor for flow depth, CD, and enter this value in 

Column 11B. Note, this factor is only significant in cases where the daho/Do ratio is less than 
3.2. 

 
Step 13  Using Equation 1.41, compute the correction factor for relative flow, CQ, and enter this value 

in Column 12B. This factor = 1.0 if there are less than 3 pipes at the structure. 
 
Step 14  Using Equation 1.42, compute the correction factor for plunging flow, Cp, and enter this value 

in Column 13B. This factor = 1.0 if there is no plunging flow. This correction factor is only 
applied when h>daho. 

 
Step 15  Enter in Column 14B the correction factor for benching, CB, as determined from Table 1.17. 

Linear interpolation between the two columns of values will most likely be necessary. 
 
Step 16  Using Equation 1.37, compute the value of K and enter this value in Column 15B and 11A. 
 
Step 17  Compute the total access hole loss, Hah, by multiplying the K value in Column 11A by the 

velocity head in Column 7A. Enter this value in Column 12A.  
 
Step 18  Compute EGLi at the structure by adding the structure losses in Column 12A to the EGLo 

value in Column 10A. Enter this value in Column 13A. 
 
Step 19  Compute the hydraulic grade line (HGL) at the structure by subtracting the velocity head in 

Column 7A from the EGLi value in Column 13A. Enter this value in Column 14A. 
 
Step 20  Determine the top of conduit (TOC) value for the inflow pipe (using information from the storm 

drain computation sheet) and enter this value in Column 15A. 
 
Step 21  Enter the ground surface, top of grate elevation or other high water limits at the structure in 

Column 16A. If the HGL value in Column 14A exceeds the limiting elevation, design 
modifications will be required. 
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Step 22  Enter the structure ID for the next upstream structure in Column 1A and 1B of the next line. 
When starting a new branch line, skip to Step 24.  

 
Step 23  Continue to determine the EGL through the system by repeating Steps 4 through 23. (Begin 

with Step 2 if working with a drop structure. This begins the design process again as if there 
were no system down stream from the drop structure). 

 
Step 24  When starting a new branch line, enter the structure ID for the branch structure in Column 1A 

and 1B of a new line. Transfer the values from Columns 2A through 10A and 2B to 7B 
associated with this structure on the main branch run to the corresponding columns for the 
branch line. If flow in the main storm drain at the branch point is subcritical, continue with 
Step 9; if supercritical, continue with Step 5E. 

 

1.2.12 Storm Drain Design Example 

The following storm drain design example illustrates the application of the design procedures outlined in 
Section 1.2.10. 
 
Example of Preliminary Storm Drain Design  

Given: The roadway plan and section illustrated in Figure 1.29, duration intensity information in Table 
1.19 and inlet drainage area information in Table 1.18. All grates are type P 50 x 100, all piping is 
reinforced concrete pipe (RCP) with a Manning's n value of 0.013, and the minimum design pipe 
diameter = 18 in for maintenance purposes. 

 
Find: 

(1) Using the procedures outlined in Section 1.2.10 determine appropriate pipe sizes and inverts 
for the system illustrated in Figure 1.29. 

 
(2) Evaluate the HGL for the system configuration determined in part (1) using the procedure 

outlined in Section 1.2.10. 
Solution: 
 (1) Preliminary Storm Drain Design 
 
Step 1.Figure 1.29 illustrates the proposed system layout including location of storm drains, access holes, 

and other structures. All structures have been numbered for reference.  Figure 1.30 (a) and (b) 
illustrate the corresponding storm drain profiles.  

 
Step 2.Drainage areas, runoff coefficients, and times of concentration are tabulated in Figure 1.31. 

Example problems documenting the computation of these values are included in this section 
 

Starting at the upstream end of a conduit run, Steps 3 and 4 from Section 1.2.10 are completed for 
each storm drain pipe. A summary tabulation of the computational process is provided in Figure 
1.31. The column by column computations for each section of conduit follow: 

 
 

Table 1.18 Drainage Area Information for Design Example  

Inlet No. 
Drainage Area 

(ac) 
"C" 

Time of Concentration 
(min) 

40 0.64 0.73 3 

41 0.35 0.73 2 

42 0.32 0.73 2 

43 -- -- -- 

44       
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Table 1.19 Intensity/Duration Data Design Example  

Time (min) 5 10 15 20 30 40 50 60 120 

Intensity (in/hr) 7.1 5.9 5.1 4.5 3.5 3 2.6 2.4 1.4 

 

 

Figure 1.29 Roadway Plan and Sections for Example 
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Figure 1.30 Storm Drain Profiles for Example 
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Figure 1.31 Storm Drain Computation Sheet for Example  
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Structure 40 to 41 
 
Col. 1 From structure 40 
 

  

Col. 2 To structure 41 
 

  

Col. 3 Run Length 
 

L = 2000 ft - 1639 ft  
L = 361 ft 
 

Figure 1.30 

Col. 4 Inlet Area Ai = 0.64 ac  
 

Table 1.18 

Col. 5 Total Area 
 

At = 0.64 ac Total area up to inlet 40 
 

Col. 6 "C"  
 

C = 0.73  Table 1.18 

Col. 7 Inlet CA 
 

CA = (0.64)(0.73)  
CA = 0.47 ac 
 

Col. 4 times Col. 6 
 

Col. 8 Sum CA ΣCA = 0.47 + 0 
ΣCA= 0.47 ac  
 

Col. 7 plus previous 
Col. 8 

Col. 9 Inlet Time ti = 3 min Table 1.18 
 

Col. 10 Sys. Time tc = 3 min (use 5 min) same as Col. 9 for upstream most 
section 
 

Col. 11 Intensity I = 7.1 in/hr Table 1.19; System time less than 5 
minutes therefore,  use 5 minutes 

Col. 12 Runoff Q = Cf (CA) (I) 
Q = 1.0(0.47)(7.1) 
 
Q = 3.3 ft3/sec 
 

Equation 1.3 of the Hydrology 
Technical Manual; Cf = 1.0 (10yr) 
Col. 8 times Col. 11 multiplied by 1.0 
 

Col. 13 Pipe Dia. D = [(Qn)/(KQ So
0.5)]0.375  

D = [(3.3)(0.013)/(0.46)(0.03) 0.5)]0.375 

D = 0.8 ft 
Dmin = 1.5 ft  
 

Equation 1.18 or Figure 1.17  
 
 
use Dmin 

Col. 14 Full Cap Qf = (KQ/n) D2.67 So
0.5 

Qf = (0.46/0.013) (1.5)2.67 (0.03)0.5 

Qf = 18.1ft3/s 
 

Equation 1.18 or Figure 1.17  
 

Col. 15 Vel. Full  
 

Vf = (KV/n) D0.67 So
0.5  

Vf = (0.59/0.013) (1.5) 0.67 (0.03) 0.5 

Vf = 10.3 ft/s 
 

Equation 1.17 or Figure 1.17 
 

Col. 16 Vel. Design Q/Qf = 3.3/18.1 = 0.18 
V/Vf = 0.73  
V = (0.73) (10.3) 
V = 7.52 ft/s 
 

 
Figure 1.19a 

Col. 17 Sect. Time ts = L/V = 361 / 7.52 / 60  
ts = 0.8 min; use 1 min 

Col. 3 divided by Col. 16 
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Col. 18 U/S Invert = Grnd - 3.0 ft - dia  
= 370.0 - 3.0 - 1.5  
 
= 365.5 ft 
 

3 ft = min cover  
Ground elevation from Figure 1.30 

Col. 19 D/S Invert = (365.5) - (361.0)(0.03) 
= 354.67 ft 
 

Col. 18 - (Col. 3)(Col. 21) 

Col. 20 Crown Drop = 0 Upstream most invert 
 

Col. 21 Slope S = 0.03 select desired pipe slope 
 

At this point, the pipe should be checked to determine if it still has adequate cover. 
 354.67 + 1.5 + 3.0 = 359.17 Invert elev. + Diam + min cover 
 Ground elevation of 360.0 ft is greater than 359.17 ft so OK 

 
 

Structure 41 to 42 
 

  

Col. 1 From  
 

= 41  

Col. 2 To  
 

= 42  

Col. 3 Run Length L = 1639 - 1311 \ 
L = 328 ft 
 

Figure 1.30 
 

Col. 4 Inlet Area Ai = 0.35 ac Table 1.18 
 

Col. 5 Total Area At = 0.35 + 0.64 
At = 0.99 ac 
 

Col. 4 plus structure 42 
total area, Table 1.18 
 

Col. 6 "C" C = 0.73 Table 1.18 
 

Col. 7 Inlet CA CA = (0.73)(0.35)  
CA = 0.25 ac 
 

Col. 4 times Col. 6 
 

Col. 8 Sum CA   
 

ΣCA = 0.25 + 0.47  
ΣCA = 0.72 ac  
 

Col. 7 plus previous  
Col. 8 

Col. 9 Inlet Time 
 

ti = 2 min Table 1.18 

Col. 10 Sys. Time tc = 4 min (use 5 min) Col. 9 + Col. 17 for line 40-41 
 

Col. 11 Intensity I = 7.1 in/hr Table 1.19; system time equals 5 
min 
 

Col. 12 Runoff Q = (Cf)(CA)(I) 
Q = 1.0(0.72) (7.1)  
Q = 5.1 ft3/sec 
 

Equation 1.3 of the Hydrology 
Technical Manual; Cf =1.0(10-yr) 
Col. 8 times Col. 11 times Cf 
 

Col. 13 Pipe Dia. D = [(Qn)/(KQ So
0.5)]0.375  

D = [(5.1) (0.013)/(0.46)(0.03) 0.5] 0.375 

D = 0.93 ft  
Dmin = 1.5 ft use Dmin 

 

Equation 1.18 or Figure 1.17  
 
 
use Dmin 
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Col. 14 Full Cap.  
 

Qf = (KQ/n) D2.67 So
0.5 

Qf = (0.46/0.013)(1.5)2.67(0.03)0.5 

Qf = 18.1 ft3/s 
 

Equation 1.18 or Figure 1.17 
 

Col. 15 Vel. Full  
 

Vf = (KV/n) D0.67 So
0.5  

Vf = (0.59/0.013)(1.5)0.67 (0.03)0.5 

Vf = 10.3 ft/s 
 

Equation 1.18 or Figure 1.17 
 

Col. 16 Vel. Design 
 

Q/Qf = 5.1/18.1 = 0.28 
V/Vf = 0.84 
V = (0.84) (10.3) 
V = 8.7 ft/s 
 

 
Figure 1.19a 

Col. 17 Sect. Time Ts = L/V = 328 / 8.75 / 60  
Ts = 0.6 min; use 1 min 
 

Col. 3 divided by Col. 16 
 

Col. 18 U/S Invert = 354.67 - 0.6 
= 354.07 ft 

Downstream invert of upstream 
conduit minus estimated structure 
loss (drop) 
 

Col. 19 D/S Invert = (354.07) - (328)(0.03)  
= 344.23 ft 
 
 

Col. 18 - (Col. 3)(Col. 21) 
 

Col. 20 Crown Drop = Hah = Kah (V2 / 2g)  
 
= (0.5)(8.7)2 / [(2)(32.2)]  
= 0.6 ft 
 

Equation 1.36 with Table 1.15 
Kah = 0.5 for inlet - straight run 
 

Col. 21 Slope S = 0.03 select desired pipe slope 
 

Structure 42 to 43 
 

  

Col. 1 From structure  
 

= 42  

Col. 2 To structure = 43 
 

 

Col. 3 Run Length L = 14.1 ft Figure 1.30 
 

Col. 4 Inlet Area Ai = 0.32 ac Table 1.18 
 

Col. 5 Total Area At = 0.32 + 0.99  
At = 1.31 ac 

Col. 4 plus previous Col. 5 
total area, Table 1.18 
 

Col. 6 "C" C = 0.73 Table 1.18 
 

Col. 7 Inlet CA CA = (0.73)(0.32) 
CA = 0.23 ac 

Col. 4 times Col. 6 
 

Col. 8 Sum CA ΣCA = 0.23 + 0.72 
ΣCA = 0.95 ac 

Col. 7 plus structure 43 
total CA values 
 

Col. 9 Inlet Time ti = 2 min Table 1.18 
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Col. 10 Sys. Time tc = 5 min Col. 9 + Col. 17 for line 40-41 
plus Col.17 for line 41-42 
 

Col. 11 Intensity 
 

I = 7.1 in/hr Table 1.19 

Col. 12 Runoff Q = (Cf)(CA)(I)  
Q = 1.0 (0.95) (7.1) 
Q = 6.75 ft3/sec 
 

Col. 8 times Col. 11 
 

Col. 13 Pipe Dia. D = [(Qn)/(KQ So
0.5)] 0.375 

D =[(6.75)(0.013)/(0.46)(0.001)0.5]0.375 

D = 1.96 ft  
D = 2.0 ft 
 

Equation 1.18 or Figure 1.17  
 
Use nominal size 
 

Col. 14 Full Cap . Qf = (KQ/n)(D2.67)(So
0.5)  

Qf = (0.46/(0.013)(2.0) 2.67 (0.001)0.5 

Qf = 7.12 ft3/s 
 

Equation 1.18 or Figure 1.17  
 

Col. 15 Vel. Full Vf = (Kv/n) D0.67 So
0.5 

Vf = (0.59)/(0.013)(2.0) 0.67 (0.001)0.5 

Vf = 2.28 ft/s 
 

Equation 1.18 or Figure 1.17  
 

Col. 16 Vel. Design Q/Qf = 6.75/7.12 = 0.95 
V/Vf = 1.15 
V = (1.15) (2.28) 
V = 2.6 ft/s 
 

 
Figure 1.19a 

Col. 17 Sect. Time ts = L/V = 14.1 / 2.6 / 60  
ts = 0.09 min, use 0.0 min 
 

Col. 3 divided by Col. 16 
 

Col. 18 U/S Invert = 344.23 - 0.16 
= 344.07 ft 

Downstream invert of upstream 
conduit minus estimated structure 
loss (drop) 
 

Col. 19 D/S Invert = 344.07 - (14.1)(0.001) 
= 344.06 ft 
 
 

Col. 18 - (Col. 3)(Col. 21) 
 

Col. 20 Crown Drop = Hah = Kah (V2 / 2g) 
 
= (1.5)(2.6)2 / [(2)(32.2)]  
 
= 0.16 ft 
 

Equation 1.36 and Table 1.15; Kah 

=1.5 
for inlet - angled through 90 degrees 
 

Col. 21 Slope S = 0.001 Select desired pipe slope 
 

Structure 43 to 44 
 

  

Col. 1 From  
 

= 43  

Col. 2 To  
 

= 44  

Col. 3 Run Length L = 55.8 ft Figure 1.30 
 

Col. 4 Inlet Area Ai = 0.0 ac Table 1.18 
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Col. 5 Total Area At = 1.31 ac Col. 4 plus previous Col. 5 
 

Col. 6 "C" C = n/a Table 1.18 
 

Col. 7 Inlet CA CA = 0.0 Col. 4 times Col. 6 
 

Col. 8 Sum CA ΣCA = 0.00 + 0.95 
ΣCA = 0.95 ac 

Col. 7 plus previous Col. 8 
 

Col. 9 Inlet Time n/a No inlet 
 

Col. 10 Sys. Time tc = 5 min Col. 10 + Col. 17 for line 42-43 
 

Col. 11 Intensity I = 7.1 in/hr Table 1.18 
 

Col. 12 Runoff Q =Cf (CA) I 
Q =1.0 (0.95) (7.1)  
Q = 6.75 ft3/sec 
 

 
Col. 8 times Col. 11 times Cf 
 

Col. 13 Pipe Dia. D = [(Qn)/(KQ So
0.5)] 0.375 

D = [(6.75)(0.013)/(0.46)(0.01)0.5]0.375 

D = 1.27 ft  
 
D = 2.0 ft 
 

Equation 1.18 or Figure 1.17  
 
U/S conduit was 2.0 ft. - Do not 
reduce size inside the system 
 

Col. 14 Full Cap. Qf = (KQ/n)(D2.67)(So0.5)  
Qf = (0.46)/(0.013)(2.0) 2.67 (0.01) 0.5 

Qf = 22.52 ft3/s 
 

Equation 1.18 or Figure 1.17  
 

Col. 15 Vel. Full Vf = (Kv/n) D0.67 So
0.5 

Vf = (0.59)/(0.013)(2.0)0.67 (0.01) 0.5 

Vf = 7.22 ft/s 
 

 

Equation 1.17 or Figure 1.17  
 

Col. 16 Vel. Design Q/Qf = 6.75/22.52 = 0.30 
V/Vf = 0.84  
V = (0.84) (7.22) 
V = 6.1 ft/s 
 

 
Figure 1.19a 
 

Col. 17 Sect. Time ts = 55.8 /6.1 / 60 
ts = 0.15 min, use 0.0 min 
 

Col. 3 divided by Col. 16 
 

Col. 19 D/S Invert = 330.71 ft Invert at discharge point in ditch 
 

Col. 18 U/S Invert = 330.71 + (55.8)(0.01)  
= 331.27 ft 
 

Col. 19 + (Col. 3)(Col. 21) 
 

Col. 20 Crown Drop   
 

= 344.06 - 331.27 
= 12.79 ft straight run 
 

Col. 19 previous run - Col. 18 

Col. 21 Slope S = 0.01 Select desired pipe slope 
 

 
(2) Energy Grade Line Evaluation Computations - English Units 
 

The following computational procedure follows the steps outlined in Section 1.2.11 above. 
Starting at structure 44, computations proceed in the upstream direction. A summary tabulation of 



 iSWMTM Technical Manual Hydraulics 

Streets and Closed Conduits HA-81 
April 2010, Revised 9/2014 

the computational process is provided in Figure 1.32 English and Figure 1.33 English. The 
column by column computations for each section of storm drain follow: 

 
RUN FROM STRUCTURE 44 TO 43 

 
Outlet 
 

 
 

  

Step 1   Col. 1A  
Col. 14A 
Col. 10A  
 

Outlet 
HGL = 333.0  
EGL = 333.0 

 
Downstream pool elevation 
Assume no velocity in pool 

Structure 44 
 

  

Step 2 Col. 1A, 1B  
Col. 15A 
 

Str. ID = 44 
Invert = 330.71 ft  
TOC = 330.71 + 2.0 
TOC = 332.71 
Surface Elev = 332.71  
 

Outlet 
Outfall invert 
Top of storm drain at outfall 
 
Match TOC 

Step 3  
 
 
 
Col. 13A 

HGL = TW = 333.0  
EGLi = HGL + V2/2g  
 
EGLi = 333.0 +0.07 
EGLi = 333.07 

From Step 1 
Use Case 1 since TW is above 
the top of conduit 
 
EGLi for str. 44 
 

Structure 43 
 

  

Step 4 Col. 1A, 1B  
Col. 2A 
Col. 3A  
Col. 4A 

Str. ID = 43  
D = 2.0 ft  
Q = 6.75 cfs  
L = 55.8 ft 

Next Structure 
Pipe Diameter 
Conduit discharge (design value) 
Conduit length 
 

Step 5 Col. 5A V = Q/A  

V = 6.75/[(π/4) (2.0)2]  

V = 2.15 ft/s 
 

Velocity; use full barrel velocity 
since outlet is submerged. 
 

 Col. 7A V2/2g = (2.15)2/(2)(32.2)  
 = 0.07 ft 
 

Velocity head in conduit 
 

Step 6 Col. 8A Sf = [(Qn)/(KQD2.67)] 2  
Sf = [(6.75)(0.013)/(0.46)(2.0)2.67] 2 

Sf = 0.00090 ft/ft 
 

Equation 1.18 

Step 7 Col. 2B  
 
 
Col. 7B &  
Col. 9A 

Hf = Sf L  
Hf = (0.0009) (55.8)  
Hf = 0.05 
hb, Hc, He, Hj = 0 
Total = 0.05 ft 
 

Equation 1.27 
Col. 8A x Col. 4A 
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Figure 1.32 Energy Grade Line Computation Sheet, Table A, for English Example 
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Figure 1.33 Energy Grade Line Computation Sheet, Table B, for English Example 
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Step 8 Col. 10A EGLo = EGLi + pipe loss 
EGLo = 333.07 + 0.05 
EGLo = 333.12 ft 
 
HGL = 333.12 - 0.07 
        = 333.05  
TOC = 331.27 + 2.0 
        = 333.27  
 

 
 
 
 
 
Check for full flow - close 
 
Assumption OK 

Step 9 Col. 8B Not applicable due to drop structure 
 

 

Step 10 Col. 9B  
and 11A 

Ke = 0.5 Inflow pipe invert much higher than 
daho. Assume square edge 
entrance 
 

Step 17 Col. 12A K(V2/2g) = (0.50)(0.07)  
K(V2/2g) = 0.04 ft 
 

Col. 11A times Col. 7A 
 

Step 18 Col. 13A EGLi = EGLo  
EGLi = 333.12 + 0.04 
EGLi = 333.16 ft 
 

Col 10A plus 12A 
 

Step 19 Col. 14A HGL = EGLi = 333.16 ft  
 
daho  = HGL- invert 
       = 333.16 - 331.27 
       = 1.89 ft 

For drop structures, the HGL is the 
same as the EGL 
 
 
Col. 8B 
 

Step 20 Col. 15A U/S TOC = Inv. + Dia.  
U/S TOC = 344.06 + 2.0 
U/S TOC = 346.06 ft 
 

From storm drain comp. sheet 
(Figure 1.32) 
 
 

Step 21 Col. 16A Surf. Elev. = 347.76 ft 
347.76 > 333.09 

From Figure 1.31. 
Surface elev. exceeds HGL, OK 
 

Step 2 Col. 1A, 1B  
Col. 15A  
 
Col. 16A 

Str. ID = 43  
U/S TOC = 344.06 + 2.0 
               = 346.06 
Surface Elev = 347.76 
 

Drop Structure - new start 
 

Step 3  
 
Col. 14A  
 
 
 
 
Col. 13A 

HGL' = inv. + (dc+D)/2  
HGL' = 344.06 + (0.80 + 2.0)/2 
HGL = 345.46 ft 
 
EGL = HGL + V2/2g  
 
EGL = 345.46 + 0.10 
EGL = 345.56 ft 
 

Calculate new HGL - Use Case 2 
dc from Figure 1.19b  
 
 
V = 2.6 fps from Prelim. Comp. 
Sht. 
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Structure 42 
 

  

Step 4 Col.1A  
Col. 2A 
Col. 3A  
Col. 4A 

Str. ID = 42  
D = 2.0 ft  
Q = 6.75 cfs  
L = 14.1 ft 

 
Pipe Diameter 
Conduit discharge (design value) 
Conduit length 
 

Step 5A Col. 5A  
 
Col. 6A  
 
Col. 7A 

V = 2.6 ft/s  
Q/Qf = 6.75 / 7.12 = 0.95 
dn = 1.56 ft Chart 26 
 
V2/2g = (2.6) 2/(2)(32.2)  
V2/2g = 0.10 ft 
 

For flow: Actual velocity from storm 
drain computation sheet. 
Figure 1.32 
 
Velocity head in conduit 
 

Step 5B Col.6bA dc = 0.80 ft From HDS-5 
 

Step 5C  dn < dc Flow is subcritical 
 

Step 6 Col. 8A Sf = 0.001 Conduit not full so Sf = pipe slope 
dn = 1.56 (Figure 1.19a) 
dc = 0.80 ( HDS-5) 
Flow is subcritical 
 

Step 7  
 
Col. 2B  
 
Col. 7B  
and 9A 
 

Hf = Sf L  
Hf = (0.001) (14.1)  
Hf = 0.014 ft 
hb, Hc, He, Hj = 0 
Total = 0.014 ft 
 

Equation 1.27 
Col. 8A x Col. 5A 
 

Step 8  
 
Col. 10A  
 

EGLo = EGLi + total pipe loss  
EGLo = 345.56 + 0.014 
EGLo = 345.57 ft 

Col. 14A plus Col. 9A 
 

Step 9 Col. 8B daho = EGLo - velocity head - pipe invert 
daho = 345.57 - 0.10 - 344.07  
daho = 1.40 ft 
 

Col. 10A - Column 7A - pipe invert 

Step 10 Col. 9B Ko =0.1(b/Do)(1-sin θ)+1.4(b/Do)0.15 sin (θ) 

b = 4.0 ft  
Do = 2.0 ft  
θ = 90o 
Ko = 0.1(4.0/2.0)(1 - sin 90)+   
                           1.4(4.0/2.0)0.15 sin 90 
Ko = 1.55 
 

Equation 1.38 
Access hole diameter. 
Col. 2A - outlet pipe diam 
Flow deflection angle 
 

Step 11 Col. 10B CD = (Do/Di)3  
daho = 1.40 
daho/Do = (1.40/2.0) 
daho/Do = 0.70 < 3.2  
CD = 1.0 
 

Equation 1.39; pipe diameter 
Column 8B 
 
therefore 
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Step 12 Col. 11B 
 

Cd = 0.5 (daho/ Do)0.6  
daho/Do = 0.70 < 3.2  
Cd = 0.5 (1.4/2.0)0.6 

Cd = 0.40 
 

Equation 1.40; Flow depth 
correction. 
 

Step 13 Col. 12B CQ = (1-2 sin θ)(1-Qi/Qo)0.75+1  
CQ = 1.0 

Equation 1.41; relative flow 
No additional pipes entering 
 

Step 14 Col. 13B Cp = 1 + 0.2(h/Do)[(h-d)/Do]  
Cp = 1.0 

Equation 1.42; plunging flow 
No plunging flow 
 

Step 15 Col. 14B CB = 1.0 Benching Correction, flat floor 
(Table 1.17) 
 

Step 16 Col. 15B and 
11A 

K = Ko CD Cd CQ Cp CB  
K = (1.55)(1.0)(0.40)(1.0)(1.0)(1.0) 
K = 0.62 
 

Equation 1.37 
 

Step 17 Col. 12A K(V2/2g) = (0.62)(0.10)  
K(V2/2g) = 0.06 ft 
 

Col. 11A times Col. 7A 
 

Step 18 Col. 13A EGLi = EGLo + K(V2/2g)  
EGLi = 346.05 + 0.06 
EGLi = 346.11 
 

Col. 10A plus 12A 
 

Step 19 Col. 14A HGL = EGLi - V2/2g  
HGL = 346.11 - 0.10 
HGL = 346.01 ft 
 

Col. 13A minus Col. 7A 
 

Step 20 Col 15A U/S TOC = Inv. + Dia.  
 
U/S TOC = 344.23 + 1.5  
U/S TOC = 345.73 ft 
 

Information from storm drain 
comp.sheet (Figure 1.31) 
 

Step 21 Col 16A Surf. Elev. = 349.31 ft 
349.31 > 345.96 

From Figure 1.30 
Surface elev. exceeds HGL, OK 
 

Structure 41 
 

  

Step 4 Col. 1A, 1B 
Col. 2A  
Col. 3A  
Col. 4A 

Str. ID = 41  
D = 1.50 ft  
Q = 5.10 cfs  
L = 328 ft 

Next Structure  
Pipe Diameter 
Conduit discharge (design value) 
Conduit length 
 

Step 5 Part full flow from column's 12 and 15 of storm drain 
computation sheet. 
 

Continue with Step 5A 

Step 5A  
 
 
Col. 6aA 

Q/Qf = 5.1/18.1 = 0.28 
d/df = 0.37  
d = (0.37) (1.5) 
d = 0.56 ft 
 

 
Figure 1.19a 

  
 
Col. 5A 

V/Vf = 0.84  
V = (0.84)(10.3)  
V = 8.65 fps 
 

Figure 1.19a 
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Col. 7A 

V2/2g = (8.65)2/(2)(32.2)  
V2/2g = 1.16 ft 
 

Velocity head 

Step 5B 
 

Col. 6bA dc = 0.85 ft Figure 1.19b 

Step 5C  0.56 < 0.85 Supercritical flow since dn < dc 

 
Step 5D 
 

Col. 7B Total pipe loss = 0  

Structure 40 
 

  

Step 5E 
 

Col. 1A,1B 
Col. 2A  
Col. 3A  
Col. 4A 

Str. Id. = 40  
D = 1.5 ft  
Q = 3.35 cfs  
L = 361.0 ft 

Next structure 
Pipe diameter 
Conduit discharge (design) 
Conduit length 
 

Step 5F  
 
 
Col. 6aA 
Col. 6bA 

Q/Qf = 3.3/18.1 = 0.18 
d/dc = 0.29  
d = (0.29)(1.5) 
d = 0.43 ft 
dc = 0.7 ft 

 
Figure 1.19a 
 
 
Figure 1.19b 
 

Step 5H  
 
Col. 5A  
 
Col. 7A 

V/Vf = 0.73 
V = (0.73)(10.3) 
V = 7.52 fps 
 
V2/2g = (7.52)2/(2)(32.2)  
V2/2g = 0.88 ft 
 

Figure 1.19a 
 
 
 
Velocity head 
 

Step 5I  dn = 0.43 ft < 0.70 ft= dc Supercritical flow since dn < dc 

 
Step 5K Col. 11A, and 

15B 
Col. 12A 

 
K = 0.0  
K(V2/2g) = 0 

 
Str. 41 line; supercritical flow; 
no structure losses 
 

Since both conduits 42-41 and 41-40 are supercritical - establish HGL and EGL at each side of access hole 41. 
 
  

 
 
 
 
Col. 10A  
 
Col. 14A  
 
Col. 13A 

HGL = Inv. + d  
HGL = 354.07 + 0.56  
HGL = 354.63 ft 
EGL = 354.63 + 1.16 
HGL + velocity head 
EGL = 355.79 ft  
HGL = 354.67 + 0.43  
HGL = 355.10 ft  
EGL = 355.10 + 0.88  
EGL = 355.98 ft 

 
D/S Invert + Flow depth 
 
 
 
EGLo of Str.41 
U/S invert + Flow depth 
Highest HGL 
HGL + velocity head 
EGLi of Str. 41 
 

Step 20 Col. 15A U/S TOC = Inv. + Dia.  
U/S TOC = 354.67 + 1.5  
U/S TOC = 356.17 ft 
 

Information from storm drain comp 
Sheet (Figure 1.31) for Str. 41 
 

Step 21 Col. 16A Surf. Elev. = 360.0 ft 
360.0 > 355.10 

From Figure 1.30. 
Surface elev. > HGL, OK 
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Step 10b Col. 8B  
 
 
Col. 14A 
Col.13A 

daho = 0.67 (1.5) = 1.0 ft  
HGL = Str. 40 Inv. + daho  
HGL = 365.50 + 1.0.  
HGL = 366.50 ft 
EGL = 366.50 ft 

Figure 1.31, HW/D = 0.67 
Structure Inv. from storm  
drain comp. sheet  
 
Assume no velocity in str. 
 

Step 20 Col. 15A U/S TOC = Inv. + Dia.  
U/S TOC = 365.5 + 1.5  
U/S TOC = 367.0 ft 

Information from storm drain 
comp. sheet (Figure 1.31) for Str. 
40 

    
Step 21 Col. 16A Surf. Elev. = 370.0 ft 

370.0 ft > 366.50 ft 
 

From Figure 1.30 
Surface Elev. > HGL, OK 

See Figures 1.32 and 1.33 for the tabulation of results. The final HGL values are indicated in Figure 1.30. 
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2.0 Storage Design 

2.1 General Storage Concepts 

2.1.1 Introduction 

This section provides general guidance on stormwater runoff storage for meeting stormwater 
management control objectives (i.e., water quality protection, downstream streambank protection, and 
flood control). 
 
Storage of stormwater runoff within a stormwater management system is essential to providing the 
extended detention of flows for water quality protection and downstream streambank protection, as well 
as for peak flow attenuation of larger flows for flood protection.  Runoff storage can be provided within an 
on-site system through the use of structural stormwater controls and/or nonstructural features and 
landscaped areas.  Figure 2.1 illustrates various storage facilities that can be considered for a 
development site. 

 

Figure 2.1 Examples of Typical Stormwater Storage Facilities 
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2.1.2 Storage Classification 
Stormwater storage(s) can be classified as either detention, extended detention or retention.  Some 
facilities include one or more types of storage. 
 
Stormwater detention is used to reduce the peak discharge and detain runoff for a specified short period 
of time.  Detention volumes are designed to completely drain after the design storm has passed.  
Detention is used to meet streambank protection criteria, and flood criteria where required.  
 
Extended detention (ED) is used to drain a runoff volume over a specified period of time, typically 24 
hours, and is used to meet streambank protection criteria.  Some structural control designs (wet ED pond, 
micropool ED pond, and shallow ED marsh) also include extended detention storage of a portion of the 
water quality protection volume. 
 
Retention facilities are designed to contain a permanent pool of water, such as stormwater ponds and 
wetlands, which is used for water quality protection.   
 
Storage facilities are often classified on the basis of their location and size.  On-site storage is 
constructed on individual development sites.  Regional storage facilities are constructed at the lower end 
of a subwatershed and are designed to manage stormwater runoff from multiple projects and/or 
properties.  A discussion of regional stormwater controls is found in Section 1.0 of the Site Development 
Controls Technical Manual. 
 
Storage can also be categorized as on-line or off-line.  On-line storage uses a structural control facility 
that intercepts flows directly within a conveyance system or stream.  Off-line storage is a separate storage 
facility to which flow is diverted from the conveyance system.  Figure 2.2 illustrates on-line versus off-line 
storage. 

 

Figure 2.2 On-Line versus Off-Line Storage 
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2.1.3 Stage-Storage Relationship 
A stage-storage curve defines the relationship between the depth of water and storage volume in a 
storage facility (see Figure 2.3).  The volume of storage can be calculated by using simple geometric 
formulas expressed as a function of depth. 
 

 

Figure 2.3 Stage-Storage Curve 
 
The storage volume for natural basins may be developed using a topographic map and the double-end 
area, frustum of a pyramid, prismoidal or circular conic section formulas.   
 
The double-end area formula (see Figure 2.4) is expressed as:  

 V1,2 = [(A1 + A2)/2]d (2.1) 
 

 

Figure 2.4 Double-End Area Method 
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 where: 

  V1,2 = storage volume (ft3) between elevations 1 and 2 

  A1 = surface area at elevation 1 (ft2) 

  A2  = surface area at elevation 2 (ft2) 

  d = change in elevation between points 1 and 2 (ft) 
 
The frustum of a pyramid formula is expressed as:  

 V = d/3 [A1 + (A1 x A2)0.5 + A2]/3 (2.2) 

 where: 

  V = volume of frustum of a pyramid (ft3) 

  d = change in elevation between points 1 and 2 (ft) 

  A1 = surface area at elevation 1 (ft2) 

  A2 = surface area at elevation 2 (ft2) 
 
The prismoidal formula for trapezoidal basins is expressed as: 

 V = LWD + (L + W) ZD2 + 4/3 Z2 D3  (2.3) 

 where: 

  V = volume of trapezoidal basin (ft3) 

  L = length of basin at base (ft) 

  W = width of basin at base (ft) 

  D = depth of basin (ft) 

  Z = side slope factor, ratio of horizontal to vertical 
 
The circular conic section formula is: 

 V = 1.047 D (R1
2 + R2

2 + R1R2) (2.4) 

 V = 1.047 D (3 R1
2 +3ZDR1 + Z2D2) (2.5) 

 where: 

  R1, R2 = bottom and surface radii of the conic section (ft) 

  D = depth of basin (ft) 

  Z = side slope factor, ratio of horizontal to vertical 
 

2.1.4 Stage-Discharge Relationship 

A stage-discharge curve defines the relationship between the depth of water and the discharge or outflow 
from a storage facility (see Figure 2.5).  A typical storage facility has two outlets or spillways: a principal 
outlet and a secondary (or emergency) outlet.  The principal outlet is usually designed with a capacity 
sufficient to convey the design flows without allowing flow to enter the emergency spillway.  A pipe 
culvert, weir, or other appropriate outlet can be used for the principal spillway or outlet. 
 
The emergency spillway is sized to provide a bypass for floodwater during a flood that exceeds the 
design capacity of the principal outlet.  This spillway should be designed taking into account the potential 
threat to downstream areas if the storage facility were to fail.  The stage-discharge curve should take into 
account the discharge characteristics of both the principal spillway and the emergency spillway.  For more 
details, see Section 2.2. 
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Figure 2.5 Stage-Discharge Curve 
 
 

2.1.5 Symbols and Definitions 

To provide consistency within this section as well as throughout this Manual, the symbols listed in Table 
2.1 will be used.  These symbols were selected because of their wide use in technical publications.  In 
some cases, the same symbol is used in existing publications for more than one definition.  Where this 
occurs in this section, the symbol will be defined where it occurs in the text or equations. 
 

Table 2.1 Symbols and Definitions 

Symbol Definition Units 

A Cross sectional or surface area ft2 

Am Drainage area mi2 

C Weir coefficient - 

d Change in elevation ft 

D Depth of basin or diameter of pipe ft 

t Routing time period sec 

g Acceleration due to gravity ft/s2 

H Head on structure ft 

HC Height of weir crest above channel bottom ft 

K Coefficient - 

I Inflow rate cfs 

L Length ft 

Q, q Peak inflow or outflow rate cfs, in 

R Surface Radii ft 

S, VS Storage volume ft3 

tb Time base on hydrograph hrs 

TI Duration of basin inflow hrs 

tP Time to peak hrs 

VS, S Storage volume ft3, in, acre-ft 

Vr Volume of runoff ft3, in, acre-ft 

W Width of basin ft 

Z Side slope factor - 
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2.1.6 General Storage Design Procedures 

Introduction 

This section discusses the general design procedures for designing storage to provide standard detention 
of stormwater runoff for flood control (Qf). 
 
The design procedures for all structural control storage facilities are the same whether or not they include 
a permanent pool of water.  In the latter case, the permanent pool elevation is taken as the “bottom” of 
storage and is treated as if it were a solid basin bottom for routing purposes. 
 
It should be noted that the location of structural stormwater controls is very important as it relates to the 
effectiveness of these facilities to control downstream impacts.  In addition, multiple storage facilities 
located in the same drainage basin will affect the timing of the runoff through the conveyance system, 
which could decrease or increase flood peaks in different downstream locations.  Therefore, a 
downstream peak flow analysis should be performed as part of the storage facility design process (see 
Section 2.0 of the Hydrology Technical Manual). 
 
In multi-purpose multi-stage facilities such as stormwater ponds, the design of storage must be integrated 
with the overall design for water quality protection objectives.  See Section 1.0 of the Site Development 
Controls Technical Manual for further guidance and criteria for the design of structural stormwater 
controls. 
 

Data Needs 

The following data are needed for storage design and routing calculations: 

 Inflow hydrograph for all selected design storms (this can be generated using a unit hydrograph 
method or the Modified Rational Method, see the Hydrology Technical Manual for more details) 

 Stage-storage curve for proposed storage facility 

 Stage-discharge curve for all outlet control structures 
 

Design Procedure 

A general procedure for using the above data in the design of storage facilities is presented below. 
 
Step 1 Compute inflow hydrograph for runoff from the “Conveyance” (e.g., Qp25) and flood mitigation 

(Qp100) design storms using the hydrologic methods outlined in Section 1.0 of the Hydrology 
Technical Manual.  Both existing- and post-development hydrographs are required for both 
the “Conveyance” and flood mitigation design storms. 

 
Step 2 Perform preliminary calculations to evaluate detention storage requirements for the 

hydrographs from Step 1 (see Section 2.1.7). 
 
Step 3 Determine the physical dimensions necessary to hold the estimated volume from Step 2, 

including freeboard.  The maximum storage requirement calculated from Step 2 should be 
used.  From the selected shape determine the maximum depth in the pond.  

 

Step 4 Select the type of outlet and size the outlet structure.  The estimated peak stage will occur for 
the estimated volume from Step 2.  The outlet structure should be sized to convey the 
allowable discharge at this stage.  

 

Step 5 Perform routing calculations using inflow hydrographs from Step 1 to check the preliminary 
design using a storage routing computer model.  If the routed post-development peak 
discharges from the “Conveyance” design storm exceed the existing-development peak 
discharges, then revise the available storage volume, outlet device, etc., and return to Step 3. 
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Step 6 Perform routing calculations using the flood mitigation hydrograph to determine if any 

increases in downstream flows from this hydrograph will cause damages and/or drainage and 
flooding problems.  If problems will be created (e.g., flooding of habitable dwellings, property 
damage, or public access and/or utility interruption) then the storage facility must be designed 
to control the increased flows from the flood mitigation storm.  If not then consider emergency 
overflow from runoff due to the flood mitigation (or larger) design storm and established 
freeboard requirements. 

 
Step 7 Evaluate the downstream effects of detention outflows for the “Conveyance” and flood 

mitigation storms to ensure that the routed hydrograph does not cause downstream flooding 
problems.  The exit hydrograph from the storage facility should be routed though the 
downstream channel system to the location where the discharge from the proposed 
development no longer has a significant impact upon the receiving stream or storm drainage 
system (see Section 2.0 of the Hydrology Technical Manual).  

 
Step 8 Evaluate the control structure outlet velocity and provide channel and bank stabilization if the 

velocity will cause erosion problems downstream.  
 
Routing of hydrographs through storage facilities is critical to the proper design of these facilities.  
Although storage design procedures using inflow/outflow analysis without routing have been developed, 
their use in designing detention facilities has not produced acceptable results in many areas of the 
country, including North Central Texas. 
 
Although hand calculation procedures are available for routing hydrographs through storage facilities, 
they are very time consuming, especially when several different designs are evaluated.  Many standard 
hydrology and hydraulics textbooks give examples of hand-routing techniques.  For this Manual, it 
assumed that designers will be using one of the many computer programs available for storage routing 
and thus other procedures and example applications will not be given here. 
 

2.1.7 Preliminary Detention Calculations 

Introduction 

Procedures for preliminary detention calculations are included here to provide a simple method that can 
be used to estimate storage needs and also provide a quick check on the results of using different 
computer programs.  Standard routing should be used for actual (final) storage facility calculations and 
design. 
 

Storage Volume 

For small drainage areas, a preliminary estimate of the storage volume required for peak flow attenuation 
may be obtained from a simplified design procedure that replaces the actual inflow and outflow 
hydrographs with the standard triangular shapes shown in Figure 2.6. 

 
The required storage volume may be estimated from the area above the outflow hydrograph and inside 
the inflow hydrograph, expressed as: 

 VS = 0.5Ti (Qi - QO) (2.6) 

 where: 

  VS = storage volume estimate (ft3) 

  Qi  = peak inflow rate (cfs) 

  QO = peak outflow rate (cfs) 

  Ti  = duration of basin inflow (s) 
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Figure 2.6 Triangular-Shaped Hydrographs 
(For Preliminary Estimate of Required Storage Volume) 

 
 

Alternative Method 

An alternative preliminary estimate of the storage volume required for a specified peak flow reduction can 
be obtained by the following regression equation procedure (Wycoff and Singh, 1976). 
 
Determine input data, including the allowable peak outflow rate, QO, the peak flow rate of the inflow 
hydrograph, Qi, the time base of the inflow hydrograph, tb, and the time to peak of the inflow hydrograph, 
tp. 
 
Calculate a preliminary estimate of the ratio VS/Vr using the input data from Step 1 and the following 
equation: 
 

 Vs/Vr = 1.291(1 – Qo/Qi)0.753 (2.7) 
 (tb/tp)0.411 
 
 where: 

  VS = volume of storage (in) 

  Vr = volume of runoff (in)  

  QO = outflow peak flow (cfs) 

  Qi = inflow peak flow (cfs) 

  tb = time base of the inflow hydrograph (hr) [Determined as the time from the beginning of rise 
to a point on the recession limb where the flow is 5% of the peak] 

  tp  = time to peak of the inflow hydrograph (hr) 
 
Multiply the volume of runoff, Vr, times the ratio VS/Vr, calculated in Step 2 to obtain the estimated storage 
volume VS. 
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Peak Flow Reduction 

A preliminary estimate of the potential peak flow reduction for a selected storage volume can be obtained 
by the following procedure.  

 
Determine volume of runoff, Vr, peak flow rate of the inflow hydrograph, Qi, time base of the inflow 
hydrograph, tb, time to peak of the inflow hydrograph, tp, and storage volume VS. 
 
Calculate a preliminary estimate of the potential peak flow reduction for the selected storage volume 
using the following equation (Wycoff and Singh, 1976): 

 QO/Qi = 1 - 0.712(VS/Vr)1.328(tb/tp)0.546 (2.8) 

 where: 

  QO = outflow peak flow (cfs) 

  Qi = inflow peak flow (cfs) 

  VS = volume of storage (in) 

  Vr = volume of runoff (in)  

  tb = time base of the inflow hydrograph (hr) [Determined as the time from the beginning of rise 
to a point on the recession limb where the flow is 5 percent of the peak] 

  tp = time to peak of the inflow hydrograph (hr) 
 
Multiply the peak flow rate of the inflow hydrograph, Qi, times the potential peak flow reduction calculated 
from Step 2 to obtain the estimated peak outflow rate, QO, for the selected storage volume. 
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2.2 Outlet Structures 

2.2.1 Symbols and Definitions 

To provide consistency within this section as well as throughout this Manual, the symbols listed in Table 
2.2 will be used.  These symbols were selected because of their wide use in technical publications.  In 
some cases, the same symbol is used in existing publications for more than one definition.  Where this 
occurs in this section, the symbol will be defined where it occurs in the text or equations.  
 

Table 2.2 Symbols and Definitions 

Symbol Definition Units 

A, a Cross sectional or surface area ft2 
Am Drainage area mi2 
B Breadth of weir ft 
C Weir coefficient - 
d Change in elevation ft 
D Depth of basin or diameter of pipe ft 
g Acceleration due to gravity ft/s2 
H Head on structure ft 
HC Height of weir crest above channel bottom ft 
K, k Coefficient - 
L Length ft 
n Manning’s n - 
Q, q Peak inflow or outflow rate cfs, in 
Vu Approach velocity ft/s 
WQv Water quality protection volume ac ft 
w Maximum cross sectional bar width facing the flow in 
x Minimum clear spacing between bars in 

 Angle of v-notch degrees 

g Angle of the grate with respect to the horizontal degrees 

 
 

2.2.2 Primary Outlets 

Introduction 

Primary outlets provide the critical function of the regulation of flow for structural stormwater controls.  
There are several different types of outlets that may consist of a single stage outlet structure, or several 
outlet structures combined to provide multi-stage outlet control. 
 
For a single stage system, the stormwater facility can be designed as a simple pipe or culvert.  For 
multistage control structures, the inlet is designed considering a range of design flows. 
 
A stage-discharge curve is developed for the full range of flows that the structure would experience.  The 
outlets are housed in a riser structure connected to a single outlet conduit.  An alternative approach would 
be to provide several pipe or culvert outlets at different levels in the basin that are either discharged 
separately or are combined to discharge at a single location. 
 
This section provides an overview of outlet structure hydraulics and design for stormwater storage 
facilities.  The design engineer is referred to an appropriate hydraulics text for additional information on 
outlet structures not contained in this section. 
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Figure 2.7 Typical Primary Outlets 
 

Outlet Structure Types 

There are a wide variety of outlet structure types, the most common of which are covered in this section.  
Descriptions and equations are provided for the following outlet types for use in stormwater facility design: 

 Orifices 

 Perforated risers 

 Pipes / Culverts 

 Sharp-crested weirs  

 Broad-crested weirs 

 V-notch weirs 

 Proportional weirs 

 Combination outlets 
 
The design professional must pay attention to material types and construction details when designing an 
outlet structure or device.  Non-corrosive material and mounting hardware are key to device longevity, 
ease of operation, and low cost maintenance.  Special attention must also be paid to not placing 
dissimilar metal materials together where a cathodic reaction will cause deterioration and destruction of 
metal parts. 
 
Protective coatings, paints, and sealants must also be chosen carefully to prevent contamination of the 
stormwater flowing through the structure/device.  This is not only important while they are being applied, 
but also as these coating deteriorate and age over the functional life of the facility. 
 

(a)  PIPE OR BOX CULVERT

(b)  RISER STRUCTURE

(single and multi-level outlets)

(c)  DROP INLET

(d)  WEIR OVERFLOW SPILLWAY

(e)  SLOTTED OUTLET

Side Elevation

Front Elevation
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Each of these outlet types has a different design purpose and application: 

 Water quality and streambank protection flows are normally handled with smaller, more protected 
outlet structures such as reverse slope pipes, hooded orifices, orifices located within screened pipes 
or risers, perforated plates or risers, and V-notch weirs. 

 

 Larger flows, such as flood flows, are typically handled through a riser with different sized openings, 
through an overflow at the top of a riser (drop inlet structure), or a flow over a broad crested weir or 
spillway through the embankment.  Overflow weirs can also be of different heights and configurations 
to handle control of multiple design flows. 

 

Orifices 

An orifice is a circular or rectangular opening of a prescribed shape and size.  The flow rate depends on 
the height of the water above the opening and the size and edge treatment of the orifice. 
 
For a single orifice, as illustrated in Figure 2.8(a), the orifice discharge can be determined using the 
standard orifice equation below.  

 Q = CA (2gH)0.5 (2.9) 

 where: 

  Q = the orifice flow discharge (cfs) 

  C = discharge coefficient  

  A = cross-sectional area of orifice or pipe (ft2) 

  g = acceleration due to gravity (32.2 ft/s2) 

  H = effective head on the orifice, from the center of orifice to the water surface  (ft) 
 
If the orifice discharges as a free outfall, then the effective head is measured from the center of the orifice 
to the upstream (headwater) surface elevation.  If the orifice discharge is submerged, then the effective 
head is the difference in elevation of the headwater and tailwater surfaces as shown in Figure 2.8(b). 
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When the material is thinner than the orifice diameter, with sharp edges, a coefficient of 0.6 should be 
used.  For square-edged entrance conditions the generic orifice equation can be simplified: 

 Q = 0.6A (2gH)0.5 = 3.78D2H0.5 (2.10) 

 where: 

  D = diameter of orifice or pipe (ft) 

 
When the material is thicker than the orifice diameter a coefficient of 0.80 should be used.  If the edges 
are rounded, a coefficient of 0.92 can be used.  
 
Flow through multiple orifices, such as the perforated plate shown in Figure 2.8(c), can be computed by 
summing the flow through individual orifices.  For multiple orifices of the same size and under the 
influence of the same effective head, the total flow can be determined by multiplying the discharge for a 
single orifice by the number of openings. 
 
Perforated orifice plates for the control of discharge can be of any size and configuration.  However, the 
Denver Urban Drainage and Flood Control District has developed standardized dimensions that have 
worked well.  Table 2.3 gives appropriate dimensions.  The vertical spacing between hole centerlines is 
always 4 inches. 
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Figure 2.8 Orifice Definitions Figure 2.9 Perforated Riser 
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Table 2.3 Circular Perforation Sizing 

Hole Diameter 
(in) 

Minimum Column Hole 
Centerline Spacing (in) 

Flow Area per Row (in2) 

1 column 2 columns 3 columns 

1/4 1 0.05 0.1 0.15 

5/16 2 0.08 0.15 0.23 

3/8 2 0.11 0.22 0.33 

7/16 2 0.15 0.3 0.45 

1/2 2 0.2 0.4 0.6 

9/16 3 0.25 0.5 0.75 

5/8 3 0.31 0.62 0.93 

11/16 3 0.37 0.74 1.11 

3/4 3 0.44 0.88 1.32 

13/16 3 0.52 1.04 1.56 

7/8 3 0.6 1.2 1.8 

15/16 3 0.69 1.38 2.07 

1 4 0.79 1.58 2.37 

1  1/16 4 0.89 1.78 2.67 

1  1/8 4 0.99 1.98 2.97 

1  3/16 4 1.11 2.22 3.33 

1  1/4 4 1.23 2.46 3.69 

1  5/16 4 1.35 2.7 4.05 

1  3/8 4 1.48 2.96 4.44 

1  7/16 4 1.62 3.24 4.86 

1  1/2 4 1.77 3.54 5.31 

1  9/16 4 1.92 3.84 5.76 

1  5/8 4 2.07 4.14 6.21 

1  11/16 4 2.24 4.48 6.72 

1  3/4 4 2.41 4.82 7.23 

1  13/16 4 2.58 5.16 7.74 

1  7/8 4 2.76 5.52 8.28 

1  15/16 4 2.95 5.9 8.85 

2 4 3.14 6.28 9.42 

Number of columns refers to parallel columns of holes 

Minimum plate thickness 1/4” 5/16” 3/8” 

Source:  Urban Drainage and Flood Control District, Denver, CO 
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For rectangular slots the height is normally 2 inches with variable width.  Only one column of rectangular 
slots is allowed. 

Figure 2.10 provides a schematic of an orifice plate outlet structure for a wet extended detention pond 
showing the design pool elevations and the flow control mechanisms. 

 

Figure 2.10 Schematic of Orifice Plate Outlet Structure 
 

Perforated Risers 

A special kind of orifice flow is a perforated riser as illustrated in Figure 2.9.  In the perforated riser, an 
orifice plate at the bottom of the riser, or in the outlet pipe just downstream from the elbow at the bottom 
of the riser, controls the flow.  It is important that the perforations in the riser convey more flow than the 
orifice plate so as not to become the control. 
 
Referring to Figure 2.9, a shortcut formula has been developed to estimate the total flow capacity of the 
perforated section (McEnroe, 1988): 
 

Q = Cp[(2Ap)/(3Hs)]*(√2g)*H3/2 (2.11) 
 
 where: 

  Q = discharge (cfs) 

  Cp = discharge coefficient for perforations (normally 0.61) 

  Ap = cross-sectional area of all the holes (ft2) 

  Hs = distance from S/2 below the lowest row of holes to S/2 above the top row (ft) 
 

Pipes and Culverts 

Discharge pipes are often used as outlet structures for stormwater control facilities.  The design of these 
pipes can be for either single or multi-stage discharges.  A reverse-slope underwater pipe is often used 
for water quality or streambank protection outlets. 
 
Pipes smaller than 12 inches in diameter may be analyzed as a submerged orifice as long as H/D is 
greater than 1.5.  Note: For low flow conditions when the flow reaches and begins to overflow the pipe, 
weir flow controls.  As the stage increases the flow will transition to orifice flow. 
 
Pipes greater than 12 inches in diameter should be analyzed as a discharge pipe with headwater and 
tailwater effects taken into account.  The outlet hydraulics for pipe flow can be determined from the outlet 
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control culvert nomographs and procedures given in Section 3.3, or by using Equation 2.12 (NRCS, 
1984). 
 
The following equation is a general pipe flow equation derived through the use of the Bernoulli and 
continuity principles.  

 Q = a[(2gH) / (1 + km + kpL)]0.5 (2.12) 

 where: 

  Q = discharge (cfs) 

  a = pipe cross sectional area (ft2) 

  g = acceleration of gravity (ft/s2) 

  H = elevation head differential (ft) 

  km = coefficient of minor losses (use 1.0) 

  kp = pipe friction coefficient = 5087n2/D4/3 

  L = pipe length (ft) 
 

Sharp-Crested Weirs 

If the overflow portion of a weir has a sharp, thin leading edge such that the water springs clear as it 
overflows, the overflow is termed a sharp-crested weir.  If the sides of the weir also cause the through 
flow to contract, it is termed an end-contracted sharp-crested weir.  Sharp-crested weirs have stable 
stage-discharge relations and are often used as a measurement device.  A sharp-crested weir with 
compensation for end contractions is illustrated in Figure 2.11(a).  The discharge equation for this 
configuration is (Chow, 1959) which can also be used for circular pipe risers: 

 Q = [(3.27 + 0.4(H/HC)] LH1.5 (2.13) 

 were: 

  Q = discharge (cfs) 

  H = head above weir crest excluding velocity head (ft) 

  HC = height of weir crest above channel bottom (ft) 

  L = horizontal weir length (ft) 

Figure 2.11 Sharp-Crested Weir 
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The discharge equation for the Cipolletti Weir is Q = 3.367 LH1/2 

A sharp-crested weir with two end contractions is illustrated in Figure 2.11(b).  The discharge equation for 
this configuration is (Chow, 1959) which can also be used for circular pipe risers: 

 Q = [(3.27 + 0.4(H/HC)] (L - 0.2H) H1.5 (2.14) 

 where: 

  Q = discharge (cfs) 

  H = head above weir crest excluding velocity head (ft) 

  HC = height of weir crest above channel bottom (ft) 

  L = horizontal weir length (ft) 
 
A sharp-crested weir will be affected by submergence when the tailwater rises above the weir crest 
elevation.  The result will be that the discharge over the weir will be reduced.  The discharge equation for 
a sharp-crested submerged weir is (Brater and King, 1976): 

 QS = Qf (1 - (H2/H1)1.5)0.385 (2.15) 

 where: 

  QS = submergence flow (cfs) 

  Qf = free flow (cfs) 

  H1 = upstream head above crest (ft) 

  H2 = downstream head above crest (ft) 
 

Broad-Crested Weirs 

A weir in the form of a relatively long raised channel control crest section is a broad-crested weir.  The 
flow control section can have different shapes, such as triangular or circular.  True broad-crested weir 
flow occurs when upstream head above the crest is between the limits of about 1/20 and 1/2 the crest 
length in the direction of flow.  For example, a thick wall or a flat stop log can act like a sharp-crested weir 
when the approach head is large enough that the flow springs from the upstream corner.  If upstream 
head is small enough relative to the top profile length, the stop log can act like a broad-crested weir 
(USBR, 1997).  
 
The equation for the broad-crested weir is (Brater and King, 1976): 

 Q = CLH1.5 (2.16) 

 where: 

  Q = discharge (cfs) 

  C = broad-crested weir coefficient 

  L = broad-crested weir length perpendicular to flow (ft) 

  H = head above weir crest (ft) 
 
If the upstream edge of a broad-crested weir is so rounded as to prevent contraction and if the slope of 
the crest is as great as the loss of head due to friction, flow will pass through critical depth at the weir 
crest; this gives the maximum C value of 3.087.  For sharp corners on the broad-crested weir, a minimum 
C value of 2.6 should be used.  Information on C values as a function of weir crest breadth and head is 
given in Table 2.4. 
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Figure 2.12 Broad-Crested Weir 

 
 
 
 

Table 2.4 Broad-Crested Weir Coefficient (C) Values 

Measured 
Head (H)* 

Weir Crest Breadth (b) in feet 

In feet 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00 10.00 15.00 

0.2 2.80 2.75 2.69 2.62 2.54 2.48 2.44 2.38 2.34 2.49 2.68 

0.4 2.92 2.80 2.72 2.64 2.61 2.60 2.58 2.54 2.50 2.56 2.70 

0.6 3.08 2.89 2.75 2.64 2.61 2.60 2.68 2.69 2.70 2.70 2.70 

0.8 3.30 3.04 2.85 2.68 2.60 2.60 2.67 2.68 2.68 2.69 2.64 

1.0 3.32 3.14 2.98 2.75 2.66 2.64 2.65 2.67 2.68 2.68 2.63 

1.2 3.32 3.20 3.08 2.86 2.70 2.65 2.64 2.67 2.66 2.69 2.64 

1.4 3.32 3.26 3.20 2.92 2.77 2.68 2.64 2.65 2.65 2.67 2.64 

1.6 3.32 3.29 3.28 3.07 2.89 2.75 2.68 2.66 2.65 2.64 2.63 

1.8 3.32 3.32 3.31 3.07 2.88 2.74 2.68 2.66 2.65 2.64 2.63 

2.0 3.32 3.31 3.30 3.03 2.85 2.76 2.72 2.68 2.65 2.64 2.63 

2.5 3.32 3.32 3.31 3.28 3.07 2.89 2.81 2.72 2.67 2.64 2.63 

3.0 3.32 3.32 3.32 3.32 3.20 3.05 2.92 2.73 2.66 2.64 2.63 

3.5 3.32 3.32 3.32 3.32 3.32 3.19 2.97 2.76 2.68 2.64 2.63 

4.0 3.32 3.32 3.32 3.32 3.32 3.32 3.07 2.79 2.70 2.64 2.63 

4.5 3.32 3.32 3.32 3.32 3.32 3.32 3.32 2.88 2.74 2.64 2.63 

5.0 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.07 2.79 2.64 2.63 

5.5 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 2.88 2.64 2.63 
 

* Measured at least 2.5H upstream of the weir. 
Source:  Brater and King (1976) 
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V-Notch Weirs 

The discharge through a V-notch weir (Figure 2.13) can be calculated from the following equation (Brater 
and King, 1976). 

 Q = 2.5 tan (/2) H2.5 (2.17) 

 where: 

  Q = discharge (cfs) 

   = angle of V-notch (degrees) 

  H = head on apex of notch (ft) 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2.13 V-Notch Weir 

Proportional Weirs 

Although it may be more complex to design and construct, a proportional weir may significantly reduce 
the required storage volume for a given site.  The proportional weir is distinguished from other control 
devices by having a linear head-discharge relationship achieved by allowing the discharge area to vary 
nonlinearly with head.  A typical proportional weir is shown in Figure 2.14.  Design equations for 
proportional weirs are (Sandvik, 1985): 

 Q = 4.97 a0.5 b (H - a/3) (2.18) 

 x/b = 1 - (1/3.17) (arctan (y/a)0.5) (2.19) 

 where: 

  Q = discharge (cfs) 

  Dimensions a, b, H, x, and y are shown in Figure 2.14 

 

Figure 2.14 Proportional Weir Dimensions 
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Combination Outlets 

Combinations of orifices, weirs, and pipes can be used to provide multi-stage outlet control for different 
control volumes within a storage facility (i.e., water quality protection volume, streambank protection 
volume, and flood control volume). 
 
They are generally two types of combination outlets: shared outlet control structures and separate outlet 
controls.  Shared outlet control is typically a number of individual outlet openings (orifices), weirs, or drops 
at different elevations on a riser pipe or box which all flow to a common larger conduit or pipe.  Figure 
2.15 shows an example of a riser designed for a wet extended detention pond.  The orifice plate outlet 
structure in Figure 2.9 is another example of a combination outlet. 
 
Separate outlet controls are less common and may consist of several pipe or culvert outlets at different 
levels in the storage facility that are either discharged separately or are combined to discharge at a single 
location. 
 
The use of a combination outlet requires the construction of a composite stage-discharge curve (as 
shown in Figure 2.16) suitable for control of multiple storm flows.  The design of multi-stage combination 
outlets is discussed later in this section. 

Figure 2.15 Schematic of Combination Outlet Structure 
 

SPv
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Figure 2.16 Composite Stage-Discharge Curve 

 

2.2.3 Extended Detention (Water Quality and Streambank Protection) 
Outlet Design 

Introduction 

Extended detention (ED) orifice sizing is required in design applications that provide extended detention 
for downstream streambank protection or the ED portion of the water quality protection volume.  The 
release rate for both the WQv and SPv should be one that discharges the ED volume in a period of 24 
hours or longer.  In both cases an extended detention orifice or reverse slope pipe can be used for the 
outlet.  For a structural control facility providing both WQv extended detention and SPv control (wet ED 
pond, micropool ED pond, and shallow ED wetland), there will be a need to design two outlet orifices – 
one for the water quality control outlet and one for the streambank protection drawdown. 
 
(The following procedures are based on the water quality outlet design procedures included in the Virginia 
Stormwater Management Handbook, 1999) 
 
The outlet hydraulics for peak control design (flood control) is usually straightforward in that an outlet is 
selected to limit the peak flow to some predetermined maximum.  Since volume and the time required for 
water to exit the storage facility are not usually considered, the outlet design can easily be calculated and 
routing procedures used to determine if quantity design criteria are met. 
 
In an extended detention facility for water quality protection or downstream streambank protection, 
however, the storage volume is detained and released for each over a specified amount of time (e.g., 24-
hours).  The release period is a “brim” drawdown time, beginning at the time of peak storage of the WQv 
or SPv until the entire calculated volume drains out of the basin.  This assumes the brim volume is present 
in the basin prior to any discharge.  In reality, however, water is flowing out of the basin prior to the full or 
brim volume being reached.  Therefore, the extended detention outlet can be sized using either of the 
following methods: 
 

 Using the maximum hydraulic head associated with the brim storage volume and maximum 
discharge, calculate the orifice size needed to achieve the required drawdown time.  Route the 
volume through the basin to verify the actual storage volume used and the drawdown time.  

 Approximate the orifice size using the average hydraulic head associated with the storage volume 
and the required drawdown time.  
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These two procedures are outlined in the examples below and can be used to size an extended detention 
orifice for water quality and/or streambank protection. 
 

Method 1: Maximum Hydraulic Head with Routing 

A wet ED pond sized for the required water quality protection volume will be used here to illustrate the 
sizing procedure for an extended-detention orifice.  
 
Given the following information, calculate the required orifice size for water quality protection design.  

 Given:  Water Quality Protection Volume (WQv) = 0.76 ac ft = 33,106 ft3 
 Maximum Hydraulic Head (Hmax) = 5.0 ft (from stage vs. storage data) 
 
Step 1 Determine the maximum discharge resulting from the 24-hour drawdown requirement.  It is 

calculated by dividing the Water Quality Protection Volume (or Streambank Protection 
Volume) by the required time to find the average discharge, and then multiplying by two to 
obtain the maximum discharge. 

 Qavg = 33,106 ft3 / (24 hr)(3,600 s/hr) = 0.38 cfs 
 Qmax = 2 * Qavg = 2 * 0.38 = 0.76 cfs 
 
Step 2 Determine the required orifice diameter by using the orifice Equation 2.9 and Qmax and Hmax: 

 Q = CA(2gH)0.5, or A = Q / C(2gH)0.5 

 A = 0.76 / 0.6[(2)(32.2)(5.0)]0.5 = 0.071 ft2 
 
 Determine pipe diameter from A = 3.14d2/4, then d = (4A/3.14)0.5 

 D = [4(0.071)/3.14]0.5 = 0.30 ft = 3.61 in 
 
 Use a 3.6-inch diameter water quality protection orifice. 
 
Routing the water quality protection volume of 0.76 ac ft through the 3.6-inch water quality protection 
orifice will allow the designer to verify the drawdown time, as well as the maximum hydraulic head 
elevation.  The routing effect will result in the actual drawdown time being less than the calculated 24 
hours.  Judgment should be used to determine whether the orifice size should be reduced to achieve the 
required 24 hours. 
 

Method 2: Average Hydraulic Head and Average  Discharge 

Using the data from the previous example use Method 2 to calculate the size of the outlet orifice.  

 Given:  Water Quality Protection Volume (WQv) = 0.76 ac ft = 33,106 ft3 
 Average Hydraulic Head (havg) = 2.5 ft (from stage vs storage data) 
 
Step 1 Determine the average release rate to release the water quality protection volume over a 24-

hour time period.  

 Q = 33,106 ft3 / (24 hr)(3,600 s/hr) = 0.38 cfs 
 
Step 2 Determine the required orifice diameter by using the orifice Equation 2.9 and the average 

head on the orifice: 

 Q = CA(2gH)0.5, or A = Q / C(2gH)0.5 

 A = 0.38 / 0.6[(2)(32.2)(2.5)]0.5 = 0.05 ft3 
 
 Determine pipe diameter from A = 3.14r2 = 3.14d2/4, then d = (4A/3.14)0.5 

 D = [4(0.05)/3.14]0.5 = 0.252 ft = 3.03 in 
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 Use a 3-inch diameter water quality protection orifice.  
 
Use of Method 1, utilizing the maximum hydraulic head and discharge and routing, results in a 3.6-inch 
diameter orifice (though actual routing may result in a changed orifice size) and Method 2, utilizing 
average hydraulic head and average discharge, results in a 3.0-inch diameter orifice.  
 

2.2.4 Multi-Stage Outlet Design 

Introduction 

A combination outlet such as a multiple orifice plate system or multi-stage riser is often used to provide 
adequate hydraulic outlet controls for the different design requirements (e.g., water quality protection, 
streambank protection, and flood control) for stormwater ponds, stormwater wetlands and detention-only 
facilities.  Separate openings or devices at different elevations are used to control the rate of discharge 
from a facility during multiple design storms.  Figures 2.9 and 2.15 are examples of multi-stage 
combination outlet systems.   
 
A design engineer may be creative to provide the most economical and hydraulically efficient outlet 
design possible in designing a multi-stage outlet.  Many iterative routings are usually required to arrive at 
a minimum structure size and storage volume that provides proper control.  The stage-discharge table or 
rating curve is a composite of the different outlets that are used for different elevations within the multi-
stage riser (see Figure 2.16) 
 

Multi-Stage Outlet Design Procedure 

Below are the steps for designing a multi-stage outlet.  Note that if a structural control facility will not 
control one or more of the required storage volumes (WQv, SPv, and Qf), then that step in the procedure is 
skipped.  
 
Step 1 Determine Stormwater Control Volumes.  Using the procedures from Section 1.0 of the 

Hydrology and Water Quality Technical Manuals, estimate the required storage volumes for 
water quality protection (WQv), streambank protection (SPv), and flood control (Qf).  

Step 2 Develop Stage-Storage Curve.  Using the structure geometry and topography, develop the 
stage-storage curve for the facility in order to provide sufficient storage for the control 
volumes involved in the design.  

Step 3 Design Water Quality Protection Outlet.  Design the water quality protection extended 
detention (WQv-ED) orifice using either Method 1 or Method 2 outlined in Section 2.2.3.  If a 
permanent pool is incorporated into the design of the facility, a portion of the storage volume 
for water quality protection will be above the elevation of the permanent pool.  The outlet can 
be protected using either a reverse slope pipe, a hooded protection device, or another 
acceptable method (see Section 2.2.5). 

Step 4 Design Streambank Protection Outlet.  Design the streambank protection extended detention 
outlet (SPv-ED) using either method from Section 2.2.3.  For this design, the storage needed 
for streambank protection will be greater than the water quality protection volume storage 
elevation determined in Step 3.  The total stage-discharge rating curve at this point will 
include the water quality protection orifice and the outlet used for streambank protection.  The 
outlet should be protected in a manner similar to that for the water quality protection orifice. 

Step 5 Design Flood Control Outlet.  The storage needed for flood control will be greater than the 
water quality protection and streambank protection storage.  Establish the Qf maximum water 
surface elevation using the stage-storage curve and subtract the SPv elevation to find the 
maximum head.  Select an outlet type and calculate the initial size and geometry based upon 
maintaining the predevelopment peak discharge rate.  Develop a stage-discharge curve for 
the combined set of outlets (WQv, SPv and Qf). 
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Step 6 Check Performance of the Outlet Structure.  Perform a hydraulic analysis of the multi-stage 
outlet structure using reservoir routing to ensure that all outlets will function as designed.  
Several iterations may be required to calibrate and optimize the hydraulics and outlets that 
are used.  Also, the structure should operate without excessive surging, noise, vibration, or 
vortex action at any stage.  This usually requires that the outlet structure have a larger cross-
sectional area than the outlet conduit.   

 The hydraulic analysis of the design must take into account the hydraulic changes that will 
occur as depth of storage changes for the different design storms.  As shown in Figure 2.17, 
as the water passes over the rim of a riser, the riser acts as a weir.  However, when the water 
surface reaches a certain height over the rim of a riser, the riser will begin to act as a 
submerged orifice.  The designer must compute the elevation at which this transition from 
riser weir flow control to riser orifice flow control takes place for an outlet where this transition 
will occur.  Also note in Figure 2.17 that as the elevation of the water increases further, the 
control can change from barrel inlet flow control to barrel pipe flow control.  Figure 2.18 
shows another condition where weir flow can change to orifice flow, which must be taken into 
account in the hydraulics of the rating curve as different design conditions results in changing 
water surface elevations.  

Step 7 Size the Emergency Spillway.  It is recommended that all stormwater impoundment 
structures have a vegetated emergency spillway (see Section 2.2.7).  An emergency spillway 
provides a degree of safety to prevent overtopping of an embankment if the primary outlet or 
principal spillway should become clogged, or otherwise inoperative.  The flood mitigation 
storm should be routed through the outlet devices and emergency spillway to ensure the 
hydraulics of the system will operate as designed.  Also check the dam safety requirements 
to be sure of an adequate design. 

Step 8 Design Outlet Protection.  Design necessary outlet protection and energy dissipation facilities 
to avoid erosion problems downstream from outlet devices and emergency spillway(s).  See 
Section 4.0, for more information.  

Step 9 Perform Buoyancy Calculations.  Perform buoyancy calculations for the outlet structure and 
footing.  Flotation will occur when the weight of the structure is less than or equal to the 
buoyant force exerted by the water.  

Step 10 Provide Seepage Control.  Seepage control should be provided for the outflow pipe or culvert 
through an embankment.  The two most common devices for controlling seepage are (1) filter 
and drainage diaphragms and (2) anti-seep collars. 
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Figure 2.17 Riser Flow Diagrams 
(Source:  VDCR, 1999) 

 
 
 

Figure 2.18 Weir and Orifice Flow 
(Source:  VDCR, 1999) 
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2.2.5 Extended Detention Outlet Protection 

Small low flow orifices such as those used for extended detention applications can easily clog, preventing 
the structural control from meeting its design purpose(s) and potentially causing adverse impacts.  
Therefore, extended detention orifices need to be adequately protected from clogging.  There are a 
number of different anti-clogging designs, including: 
 
The use of a reverse slope pipe attached to a riser for a stormwater pond or wetland with a permanent 
pool (see Figure 2.19).  The inlet is submerged a minimum of 1 foot below the elevation of the permanent 
pool to prevent floatables from clogging the pipe and to avoid discharging warmer water at the surface of 
the pond. 

The use of a hooded outlet for a stormwater pond or wetland with a permanent pool is shown in Figures 
2.20 and 2.21. 

Internal orifice protection through the use of an over-perforated vertical stand pipe with ½-inch orifices or 
slots that are protected by wirecloth and a stone filtering jacket (see Figure 2.22). 

Internal orifice size requirements may be attained by the use of adjustable gate valves to achieve an 
equivalent orifice diameter. 

Figure 2.19 Reverse Slope Pipe Outlet 
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Figure 2.20 Hooded Outlet 
 

 

 

Figure 2.21 Half-Round CMP Orifice Hood 
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Figure 2.22 Internal Control for Orifice Protection 
 

2.2.6 Trash Racks and Safety Grates 

Introduction 

The susceptibility of larger inlets to clogging by debris and trash needs to be considered when estimating 
their hydraulic capacities.  In most instances trash racks will be needed.  Trash racks and safety grates 
are a critical element of outlet structure design and serve several important functions: 

 Keeping debris away from the entrance to the outlet works where they will not clog the critical 
portions of the structure 

 Capturing debris in such a way that relatively easy removal is possible 

 Ensuring that people and large animals are kept out of confined conveyance and outlet areas 

 Providing a safety system that prevents anyone from being drawn into the outlet and allows them to 
climb to safety 

 
When designed properly, trash racks serve these purposes without interfering significantly with the 
hydraulic capacity of the outlet (or inlet in the case of conveyance structures) (ASCE, 1985; Allred-
Coonrod, 1991).  The location and size of the trash rack depends on a number of factors, including head 
losses through the rack, structural convenience, safety and size of outlet.  Well-designed trash racks can 
also have an aesthetically pleasing appearance. 
 
An example of trash racks used on a riser outlet structure is shown in Figure 2.23.  The inclined vertical 
bar rack is most effective for lower stage outlets.  Debris will ride up the trash rack as water levels rise.  
This design also allows for removal of accumulated debris with a rake while standing on top of the 
structure.  
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Figure 2.23 Example of Various Trash Racks Used on a Riser Outlet Structure 
(Source:  VDCR, 1999) 

 

Trash Rack Design 

Trash racks must be large enough so that partial plugging will not adversely restrict flows reaching the 
control outlet.  There are no universal guidelines for the design of trash racks to protect detention basin 
outlets, although a commonly used "rule-of-thumb" is to have the trash rack area at least ten times larger 
than the control outlet orifice. 
 
The surface area of all trash racks should be maximized and the trash racks should be located a suitable 
distance from the protected outlet to avoid interference with the hydraulic capacity of the outlet.  The 
spacing of trash rack bars must be proportioned to the size of the smallest outlet protected.  However, 
where a small orifice is provided, a separate trash rack for that outlet should be used, so that a simpler, 
sturdier trash rack with more widely spaced members can be used for the other outlets.  Spacing of the 
rack bars should be wide enough to avoid interference, but close enough to provide the level of clogging 
protection required.  
 
To facilitate removal of accumulated debris and sediment from around the outlet structure, the racks 
should have hinged connections.  If the rack is bolted or set in concrete it will preclude removal of 
accumulated material and will eventually adversely affect the outlet hydraulics. 
 
Since sediment will tend to accumulate around the lowest stage outlet, the inside of the outlet structure 
for a dry basin should be depressed below the ground level to minimize clogging due to sedimentation.  
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Depressing the outlet bottom to a depth below the ground surface at least equal to the diameter of the 
outlet is recommended. 
 
Trash racks at entrances to pipes and conduits should be sloped at about 3H:1V to 5H:1V to allow trash 
to slide up the rack with flow pressure and rising water level — the slower the approach flow, the flatter 
the angle.  Rack opening rules-of-thumb are found in literature.  Figure 2.24 gives opening estimates 
based on outlet diameter (UDFCD, 1992).  Judgment should be used in that an area with higher debris 
(e.g., a wooded area) may require more opening space. 
 
The bar opening space for small pipes should be less than the pipe diameter.  For larger diameter pipes, 
openings should be 6 inches or less.  Collapsible racks have been used in some places if clogging 
becomes excessive or a person becomes pinned to the rack.   
 
Alternately, debris for culvert openings can be caught upstream from the opening by using pipes placed in 
the ground or a chain safety net (USBR, 1978; UDFCD, 1999).  Racks can be hinged on top to allow for 
easy opening and cleaning. 
 
The control for the outlet should not shift to the grate, nor should the grate cause the headwater to rise 
above planned levels.  Therefore head losses through the grate should be calculated.  A number of 
empirical loss equations exist though many have difficult to estimate variables.  Two will be given to allow 
for comparison.   
 
Metcalf & Eddy (1972) give the following equation (based on German experiments) for losses.  Grate 
openings should be calculated assuming a certain percentage blockage as a worst case to determine 
losses and upstream head.  Often 40 to 50% is chosen as a working assumption. 

 Hg = Kg1 (w/x)4/3 (Vu
2
/2g) sin g (2.20) 

 Where: 

  Hg = head loss through grate (ft) 

  Kg1 = bar shape factor: 

   2.42 - sharp edged rectangular 
    1.83 - rectangular bars with semicircular upstream faces 
    1.79 - circular bars 
    1.67 - rectangular bars with semicircular up- and downstream faces 

  w = maximum cross-sectional bar width facing the flow (in) 

  x = minimum clear spacing between bars (in) 

  Vu = approach velocity (ft/s) 

  g = acceleration due to gravity (32.2 ft/s2) 

  g = angle of the grate with respect to the horizontal (degrees) 

 
The Corps of Engineers (HDC, 1988) has developed curves for trash racks based on similar and 
additional tests.  These curves are for vertical racks but presumably they can be adjusted, in a manner 
similar to the previous equation, through multiplication by the sine of the angle of the grate with respect to 
the horizontal. 

 Hg = Kg2Vu
2 (2.21) 

      2g 

 Where: 

  Kg2 is defined from a series of fit curves as: 

 sharp edged rectangular (length/thickness = 10)  
   Kg2 = 0.00158 - 0.03217 Ar + 7.1786 Ar

2 
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 sharp edged rectangular (length/thickness = 5) 
   Kg2 = -0.00731 + 0.69453 Ar + 7.0856 Ar

2 

 round edged rectangular (length/thickness = 10.9) 
   Kg2 = -0.00101 + 0.02520 Ar + 6.0000 Ar

2 

 circular cross section 
   Kg2 = 0.00866 + 0.13589 Ar + 6.0357 Ar

2 

  and Ar is the ratio of the area of the bars to the area of the grate section. 

 

Figure 2.24 Minimum Rack Size vs. Outlet Diameter  
(Source:  UDCFD, 1992) 

 

2.2.7 Secondary Outlets 

Introduction 

The purpose of a secondary outlet (emergency spillway) is to provide a controlled overflow for flows in 
excess of the maximum design storm for a storage facility.  Figure 2.25 shows an example of an 
emergency spillway.  
 
In many cases, on-site stormwater storage facilities do not warrant elaborate studies to determine 
spillway capacity.  While the risk of damage due to failure is a real one, it normally does not approach the 
catastrophic risk involved in the overtopping or breaching of a major reservoir.  By contrast, regional 
facilities with homes immediately downstream could pose a significant hazard if failure were to occur, in 
which case emergency spillway considerations are a major design factor. 
 

Emergency Spillway Design 

Emergency spillway designs are open channels, usually trapezoidal in cross section, and consist of an 
inlet channel, a control section, and an exit channel (see Figure 2.25).  The emergency spillway is 
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proportioned to pass flows in excess of the design flood (typically the flood mitigation storm or greater) 
without allowing excessive velocities and without overtopping of the embankment.  Any dam, six feet or 
higher, must meet appropriate state and federal design standards, especially those regarding spillway 
design requirements related to passage of the probable maximum flood.  In any case, the flood mitigation 
storm discharge, assuming blockage of outlet works, must be conveyed with some freeboard as specified 
by local criteria.  Flow in the emergency spillway is open channel flow (see Section 3.2, for more 
information).  Normally, it is assumed that critical depth occurs at the control section.  
 
NRCS (SCS) manuals provide guidance for the selection of emergency spillway characteristics for 
different soil conditions and different types of vegetation.  The selection of degree of retardance for a 
given spillway depends on the vegetation.  Knowing the retardance factor and the estimated discharge 
rate, the emergency spillway bottom width can be determined.  For erosion protection during the first 
year, assume minimum retardance.  Both the inlet and exit channels should have a straight alignment and 
grade.  Spillway side slopes should be no steeper the 3:1 horizontal to vertical. 
 
The most common type of emergency spillway used is a broad-crested overflow weir cut through original 
ground next to the embankment.  The transverse cross section of the weir cut is typically trapezoidal in 
shape for ease of construction.  Such an excavated emergency spillway is illustrated below. 
 

Figure 2.25 Emergency Spillway 
(Source:  VDCR, 1999) 
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3.0 Open Channels, Culverts and Bridges  

3.1 Open Channels, Culverts and Bridges Overview 

3.1.1  Key Issues in Stormwater System Design 

Introduction 

The traditional design of stormwater systems has been to collect and convey stormwater runoff as rapidly 
as possible to a suitable location where it can be discharged.  This manual takes a different approach 
wherein the design methodologies and concepts of drainage design are to be integrated with the 
objectives for water quantity and quality control. This means: 

 Stormwater systems are to remove water efficiently enough to meet flood protection criteria and level 
of service requirements, and 

 These systems are to complement the ability of the site design and structural stormwater controls to 
mitigate the major stormwater impacts of urban development. 

 
The following are some of the key issues in integrating water quantity and quality control consideration in 
stormwater system design. 
 

General Design Considerations 

 Stormwater systems should be planned and designed so as to generally conform to natural drainage 
patterns and discharge to natural drainage pathways within a drainage basin.  These natural drainage 
pathways should only be modified as a last resort to contain and safely convey the peak flows 
generated by the development.  

 Runoff must be discharged in a manner that will not cause adverse impacts on downstream 
properties or stormwater systems.  In general, runoff from development sites within a drainage basin 
should be discharged at the existing natural drainage outlet or outlets.  If the developer wishes to 
change discharge points he or she must demonstrate that the change will not have any adverse 
impacts on downstream properties or stormwater (minor) systems.  

 It is important to ensure that the combined on-site flood control system and major stormwater system 
can handle blockages and flows in excess of the design capacity to minimize the likelihood of 
nuisance flooding or damage to private properties.  If failure of minor stormwater systems and/or 
major stormwater structures occurs during these periods, the risk to life and property could be 
significantly increased.  

 In establishing the layout of stormwater systems, it is essential to ensure that flows are not diverted 
onto private property during flows up to the major stormwater system design capacity. 

 

Open Channels 

 Open channels provide opportunities for reduction of flow peaks and pollution loads.  They may be 
designed as wet or dry enhanced swales or grass channels. 

 Channels can be designed with natural meanders improving both aesthetics and pollution removal 
through increased contact time. 

 Grass channels generally provide better habitat than hardened channel sections, though studies have 
shown that riprap interstices provide significant habitat as well.  Velocities should be carefully 
checked at design flows and the outer banks at bends should be specifically designed for increased 
shear stress and super elevation. 
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 Compound sections can be developed to carry the annual flow in the lower section and higher flows 
above them.  Figure 3.1 illustrates a compound section that carries the 2-year and 100-year flows 
within banks.  This reduces channel erosion at lower flows, and meandering, self-forming low flow 
channels that attack banks.  The shelf in the compound section should have a minimum 1:12 slope to 
ensure drainage. 

 

Figure 3.1 Compound Channel 
 

 Flow control structures can be placed in the channels to increase residence time.  Higher flows 
should be calculated using a channel slope from the top of the cross piece to the next one if it is 
significantly different from the channel bottom for normal depth calculations.  Channel slope stability 
can also be ensured through the use of grade control structures that can serve as pollution reduction 
enhancements if they are set above the channel bottom.  Regular maintenance is necessary to 
remove sediment and keep the channels from aggrading and losing capacity for larger flows. 

 

Culverts 

 Culverts can serve double duty as flow retarding structures in grass channel design.  Care should be 
taken to design them as storage control structures if depths exceed several feet, and to ensure safety 
during flows. 

 Improved entrance designs can absorb considerable slope and energy for steeper sloped designs, 
thus helping to protect channels. 

 

Bridges 

 Bridges enable streams to maintain flow conveyance. 

 Bridges are usually designed so that they are not submerged. 

 Bridges may be vulnerable to failure from flood-related causes. 

 Flow velocities through bridge openings should not cause scour within the bridge opening or in the 
stream reaches adjacent to the bridge. 

 

Storage Design 

 Stormwater storage within a stormwater system is essential to providing the extended detention of 
flows for water quality treatment and downstream streambank protection, as well as for peak flow 
attenuation of larger flows for flood protection. 

 Runoff storage can be provided within an on-site flood control system through the use of structural 
stormwater controls and/or nonstructural features. 

 Stormwater storage can be provided by detention, extended detention, or retention.  

10-year storm

2-year storm

100 
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 Storage facilities may be provided on-site, or as regional facilities designed to manage stormwater 
runoff from multiple projects. 

 

Outlet Structures 

 Outlet structures provide the critical function of the regulation of flow for structural stormwater 
controls. 

 Outlet structures may consist of a single stage outlet structure, or several outlet structures combined 
to provide multi-stage outlet control. 

 Smaller, more protected outlet structures should be used for water quality and streambank protection 
flows. 

 Large flows, such as flood flows, are typically handled through a broad crested weir, a riser with 
different sized openings, a drop inlet structure, or a spillway through an embankment. 

 
 

Energy Dissipators 

 Energy dissipators should be designed to return flows to non-eroding velocities to protect 
downstream channels. 

 Care must be taken during construction that design criteria are followed exactly.  The designs 
presented in this Manual have been carefully developed through model and full-scale tests.  Each 
part of the criteria is important to their proper function. 
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3.2 Open Channel Design 

3.2.1 Overview 

Introduction 

Open channel systems and their design are an integral part of stormwater drainage design, particularly 
for development sites utilizing better site design practices and open channel structural controls.  Open 
channels include drainage ditches, grass channels, dry and wet enhanced swales, stone riprap channels 
and concrete-lined channels. 
 
The purpose of this section is to provide an overview of open channel design criteria and methods, 
including the use of channel design nomographs. 
 

Open Channel Types 

The three main classifications of open channel types according to channel linings are vegetated, flexible, 
and rigid.  Vegetated linings include grass with mulch, sod and lapped sod, and wetland channels.  Stone 
riprap and some forms of flexible man-made linings or gabions are examples of flexible linings, while rigid 
linings are generally concrete or rigid block. 
 
Vegetative Linings – Vegetation, where practical, is the most desirable lining for an artificial channel.  It 
stabilizes the channel body, consolidates the soil mass of the bed, checks erosion on the channel 
surface, provides habitat, and provides water quality benefits (see Section 3.6.3 of the Criteria Manual 
and the Site Development Controls Technical Manual for more details on using enhanced swales and 
grass channels for water quality purposes). 
 
Conditions under which vegetation may not be acceptable include but are not limited to: 

 High velocities 

 Standing or continuously flowing water 

 Lack of regular maintenance necessary to prevent growth of taller or woody vegetation 

 Lack of nutrients and inadequate topsoil 

 Excessive shade 
 
Proper seeding, mulching, and soil preparation are required during construction to assure establishment 
of healthy vegetation.  
 
If low flows are prevalent, a hard lined pilot channel may be needed, and it should be wide enough to 
accommodate maintenance equipment.   
 
Flexible Linings – Rock riprap, including rubble and gabion baskets, is the most common type of flexible 
lining for channels.  It presents a rough surface that can dissipate energy and mitigate increases in 
erosive velocity.  These linings are usually less expensive than rigid linings and have self-healing qualities 
that reduce maintenance.  However, they may require the use of a filter fabric depending on the 
underlying soils, and the growth of grass, weeds, and trees may present maintenance problems. 
 
Rigid Linings – Rigid linings are generally constructed of concrete and used where high flow capacity is 
required.  Higher velocities, however, create the potential for scour at channel lining transitions and 
channel headcutting. 
 

3.2.2 Symbols and Definitions 

To provide consistency within this section as well as throughout this Manual, the symbols listed in Table 
3.1 will be used.  These symbols were selected because of their wide use.  In some cases, the same 
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symbol is used in existing publications for more than one definition.  Where this occurs in this section, the 
symbol will be defined where it occurs in the text or equations. 
 

Table 3.1 Symbols and Definitions 

Symbol Definition Units 

 Energy coefficient - 

A Cross-sectional area ft2 

b Bottom width ft 

Cg Specific weight correction factor - 

D or d Depth of flow ft 

d Stone diameter ft 

delta d Super-elevation of the water surface profile ft 

dx 
Diameter of stone for which x percent, by weight, 
of the gradation is finer 

ft 

E Specific energy ft 

Fr Froude Number - 

g Acceleration of gravity 32.2 ft/s2 

hloss Head loss ft 

K Channel conveyance - 

ke Eddy head loss coefficient ft 

KT Trapezoidal open channel conveyance factor - 

L Length of channel ft 

Lp Length of downstream protection ft 

n Manning's roughness coefficient - 

P Wetted perimeter ft 

Q Discharge rate cfs 

R Hydraulic radius of flow ft 

Rc Mean radius of the bend ft 

S Slope ft/ft 

SWs Specific weight of stone lbs/ft3 

T Top width of water surface ft 

V or v Velocity of flow ft/s 

w Stone weight lbs 

yc Critical depth ft 

yn Normal depth ft 

z Critical flow section factor - 
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3.2.3 Manning's n Values 
The Manning's n value is an important variable in open channel flow computations.  Variation in this 
variable can significantly affect discharge, depth, and velocity estimates.  Since Manning's n values 
depend on many different physical characteristics of natural and man-made channels, care and good 
engineering judgment must be exercised in the selection process. 
 
Recommended Manning's n values for artificial channels with rigid, unlined, temporary, and stone riprap 
linings are given in Table 3.2.  Recommended values for vegetative linings should be determined using 
Figure 3.2, which provides a graphical relationship between Manning's n values and the product of 
velocity and hydraulic radius for several vegetative retardance classifications (see Table 3.6).  Figure 3.2 
is used iteratively as described in Section 3.2.5.  Recommended Manning's values for natural channels 
that are either excavated or dredged, and natural are given in Table 3.2.  For natural channels, Manning's 
n values should be estimated using experienced judgment and information presented in publications such 
as the Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains, 
FHWA-TS-84-204, 1984, FHWA HEC-15, 1988, or Chow, 1959.  When designing open channels, the 
usual choice of Manning’s roughness coefficients may be found in Table 3.5.  The local jurisdiction may 
choose to vary from these values. 
 
 
 
 
 

Table 3.2 Roughness Coefficients (Manning’s n) and Allowable Velocities for Natural 
 Channels 

Channel Description Manning’s n 

Maximum 
Permissible 

Channel Velocity 
(ft/s) 

MINOR NATURAL STREAMS   

 Fairly regular section   

  1. Some grass and weeds; little or no brush 0.030 3 to 6 

  2. Dense growth of weeds, depth of flow 
materially greater than weed height 

0.035 3 to 6 

  3. Some weeds, light brush on banks 0.035 3 to 6 

  4. Some weeds, heavy brush on banks 0.050 3 to 6 

  5. Some weeds, dense willows on banks 0.060 3 to 6 

 For trees within channels with branches submerged at 
high stage, increase above values by 

0.010  

 Irregular section with pools, slight channel meander, 
increase above values by 

0.010  

 Floodplain – Pasture   

  1. Short grass 0.030 3 to 6 

  2. Tall grass 0.035 3 to 6 

 Floodplain – Cultivated Areas   

  1. No crop 0.030 3 to 6 

  2. Mature row crops 0.035 3 to 6 

  3. Mature field crops 0.040 3 to 6 

 Floodplain – Uncleared   

  1. Heavy weeds scattered brush 0.050 3 to 6 

  2. Wooded 0.120 3 to 6 
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Table 3.2 Roughness Coefficients (Manning’s n) and Allowable Velocities for Natural 
 Channels 

Channel Description Manning’s n 

Maximum 
Permissible 

Channel Velocity 
(ft/s) 

MAJOR NATURAL STREAMS   

 Roughness coefficient is usually less than for minor 
streams of similar description on account of less 
effective resistance offered by irregular banks or 
vegetation on banks.  Values of “n” for larger streams 
of mostly regular sections, with no boulders or brush 

Range from 
0.028 to 
0.060 

3 to 6 

UNLINED VEGETATED CHANNELS   

 Clays (Bermuda Grass) 0.035 5 to 6 

 Sandy and Silty Soils (Bermuda Grass) 0.035 3 to 5 

UNLINED NON-VEGETATED CHANNELS   

 Sandy Soils 0.030 1.5 to 2.5 

 Silts 0.030 0.7 to 1.5 

 Sandy Silts 0.030 2.5 to 3.0 

 Clays 0.030 3.0 to 5.0 

 Coarse Gravels 0.030 5.0 to 6.0 

 Shale 0.030 6.0 to 10.0 

 Rock 0.025 15 

 

Table 3.3 Maximum Velocities for Vegetative Channel Linings 

Vegetation Type Slope Range (%)1 Maximum Velocity2 (ft/s) 

Bermuda grass 0-5 6 

Bahia  4 

Tall fescue grass mixtures3 0-10 4 

Kentucky bluegrass 0-5 6 

Buffalo grass 
5-10 
>10 

5 
4 

Grass mixture 
0-51 

5-10 
4 
3 

Sericea lespedeza, Weeping 
lovegrass, Alfalfa 

0-54 3 

Annuals5 0-5 3 

Sod  4 

Lapped sod  5 

1 Do not use on slopes steeper than 10% except for side-slope in combination channel. 
2 Use velocities exceeding 5 ft/s only where good stands can be maintained. 
3 Mixtures of Tall Fescue, Bahia, and/or Bermuda 
4 Do not use on slopes steeper than 5% except for side-slope in combination channel. 
5 Annuals - used on mild slopes or as temporary protection until permanent covers are 
established. 

Source:  Manual for Erosion and Sediment Control in Georgia, 1996 
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Table 3.4 Manning's Roughness Coefficients (n) for Artificial Channels 

  Depth Ranges 

Category Lining Type 0-0.5 ft 0.5-2.0 ft >2.0 ft 

Rigid Concrete 0.015 0.013 0.013 

 Grouted Riprap 0.040 0.030 0.028 

 Stone Masonry 0.042 0.032 0.030 

 Soil Cement 0.025 0.022 0.020 

 Asphalt 0.018 0.016 0.016 

Unlined Bare Soil 0.023 0.020 0.020 

 Rock Cut 0.045 0.035 0.025 

Temporary* Woven Paper Net 0.016 0.015 0.015 

 Jute Net 0.028 0.022 0.019 

 Fiberglass Roving 0.028 0.022 0.019 

 Straw with Net 0.065 0.033 0.025 

 Curled Wood Mat 0.066 0.035 0.028 

 Synthetic Mat 0.036 0.025 0.021 

Gravel Riprap 1-inch D50 0.044 0.033 0.030 

 2-inch D50 0.066 0.041 0.034 

Rock Riprap 6-inch D50 0.104 0.069 0.035 

 12-inch D50 – 0.078 0.040 

Note: Values listed are representative values for the respective depth ranges.  Manning's 
roughness coefficients, n, vary with the flow depth. 

*Some "temporary" linings become permanent when buried. 

Source: HEC-15, 1988. 

 
 

Table 3.5 Manning’s Roughness Coefficients for Design 

Lining Type Manning’s n Comments 

Grass Lined 0.035 Use for velocity check. 

 0.050 Use for channel capacity check (freeboard check) 

Concrete Lined 0.015  

Gabions 0.030  

Rock Riprap 0.040 
n = 0.0395d50

1/6 where d50 is the stone size of which 50% 
of the sample is smaller 

Grouted Riprap 0.028 FWHA 
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Figure 3.2 Manning's n Values for Vegetated Channels 
(Source:  USDA, TP-61, 1947) 
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Table 3.6 Classification of Vegetal Covers as to Degrees of Retardance 

Retardance Cover Condition 

A 
Weeping Lovegrass Excellent stand, tall (average 30") 

Yellow Bluestem Ischaemum Excellent stand, tall (average 36") 

B 

Kudzu Very dense growth, uncut 

Bermuda grass Good stand, tall (average 12”) 

Native grass mixture 

 Little bluestem, bluestem, blue gamma 
other short and long stem Midwest 
grasses 

Good stand, unmowed 

Weeping lovegrass Good stand, tall (average 24”) 

Laspedeza sericea Good stand, not woody, tall (average 19”) 

Alfalfa Good stand, uncut (average 11”) 

Weeping lovegrass Good stand, unmowed (average 13”) 

Kudzu Dense growth, uncut 

Blue gamma Good stand, uncut (average 13”) 

C 

Crabgrass Fair stand, uncut (10 – 48”) 

Bermuda grass Good stand, mowed (average 6”) 

Common lespedeza Good stand, uncut (average 11”) 

Grass-legume mixture: 

 summer (orchard grass redtop, Italian 
ryegrass, and common lespedeza) 

Good stand, uncut (6 – 8 “) 

Centipede grass Very dense cover (average 6”) 

Kentucky bluegrass Good stand, headed (6 – 12”) 

D 

Bermuda grass Good stand, cut to 2.5” 

Common lespedeza Excellent stand, uncut (average 4.5”) 

Buffalo grass Good stand, uncut (3 – 6”) 

Grass-legume mixture: 

 fall, spring (orchard grass, redtop, 
Italian ryegrass, and common 
lespedeza) 

Good stand, uncut (4 – 5”) 

Lespedeza serices After cutting to 2” (very good before cutting) 

E 
Bermuda grass Good stand, cut to 1.5” 

Bermuda grass Burned stubble 

Note:  Covers classified have been tested in experimental channels.  Covers were green and generally uniform. 
Source:  HEC-15, 1988 

 



 iSWMTM Technical Manual Hydraulics 

Open Channel Design HA-134 
April 2010, Revised 9/2014 

3.2.4 Uniform Flow Calculations 
Design Charts 

Following is a discussion of the equations that can be used for the design and analysis of open channel 
flow.  The Federal Highway Administration has prepared numerous design charts to aid in the design of 
rectangular, trapezoidal, and triangular open channel cross sections.  In addition, design charts for grass-
lined channels have been developed.  Examples of these charts and instructions for their use are given in 
Section 3.2.11. 
 

Manning's Equation 

Manning's Equation, presented in three forms below, is recommended for evaluating uniform flow 
conditions in open channels: 

 v = (1.49/n) R2/3 S1/2 (3.1) 

 Q = (1.49/n) A R2/3 S1/2 (3.2) 

 S = [Qn/(1.49 A R2/3)]2 (3.3) 
 
 where: 

  v = average channel velocity (ft/s) 

  Q = discharge rate for design conditions (cfs) 

  n = Manning's roughness coefficient 

  A = cross-sectional area (ft2) 

  R = hydraulic radius A/P (ft) 

  P = wetted perimeter (ft) 

  S = slope of the energy grade line (ft/ft) 
 
For prismatic channels, in the absence of backwater conditions, the slope of the energy grade line, water 
surface and channel bottom are assumed to be equal. 
 
For a more comprehensive discussion of open channel theory and design, see the reference USACE, 
1991/1994. 
 

Geometric Relationships 

Area, wetted perimeter, hydraulic radius, and channel top width for standard channel cross sections can 
be calculated from geometric dimensions.  Irregular channel cross sections (i.e., those with a narrow 
deep main channel and a wide shallow overbank channel) must be subdivided into segments so that the 
flow can be computed separately for the main channel and overbank portions.  This same process of 
subdivision may be used when different parts of the channel cross section have different roughness 
coefficients.  When computing the hydraulic radius of the subsections, the water depth common to the 
two adjacent subsections is not counted as wetted perimeter. 
 

Direct Solutions 

When the hydraulic radius, cross-sectional area, and roughness coefficient and slope are known, 
discharge can be calculated directly from Equation 3.2.  The slope can be calculated using Equation 3.3 
when the discharge, roughness coefficient, area, and hydraulic radius are known. 

 
Nomographs for obtaining direct solutions to Manning's Equation are presented in Figures 3.3 and 3.4.  
Figure 3.3 provides a general solution for the velocity form of Manning's Equation, while Figure 3.4 
provides a solution of Manning's Equation for trapezoidal channels. 
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General Solution Nomograph 

The following steps are used for the general solution nomograph in Figure 3.3: 

Step 1 Determine open channel data, including slope in ft/ft, hydraulic radius in ft, and Manning's n 
value. 

Step 2 Connect a line between the Manning's n scale and slope scale and note the point of 
intersection on the turning line. 

Step 3 Connect a line from the hydraulic radius to the point of intersection obtained in Step 2. 

Step 4 Extend the line from Step 3 to the velocity scale to obtain the velocity in ft/s. 
 
Trapezoidal Solution Nomograph 

The trapezoidal channel nomograph solution to Manning's Equation in Figure 3.4 can be used to find the 
depth of flow if the design discharge is known or the design discharge if the depth of flow is known. 
 
Determine input data, including slope in ft/ft, Manning's n value, bottom width in ft, and side slope in ft/ft. 

 Given Q, find d. 

a. Given the design discharge, find the product of Q times n, connect a line from the slope scale to 
the Qn scale, and find the point of intersection on the turning line. 

b. Connect a line from the turning point from Step 2a to the b scale and find the intersection with the 
z = 0 scale. 

c. Project horizontally from the point located in Step 2b to the appropriate z value and find the value 
of d/b. 

d. Multiply the value of d/b obtained in Step 2c by the bottom width b to find the depth of uniform 
flow, d. 

 Given d, find Q 

a. Given the depth of flow, find the ratio d divided by b and project a horizontal line from the d/b ratio 
at the appropriate side slope, z, to the z = 0 scale. 

b. Connect a line from the point located in Step 3a to the b scale and find the intersection with the 
turning line. 

c. Connect a line from the point located in Step 3b to the slope scale and find the intersection with 
the Qn scale. 

d. Divide the value of Qn obtained in Step 3c by the n value to find the design discharge, Q. 
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Figure 3.3 Nomograph for the Solution of Manning's Equation 
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Figure 3.4 Solution of Manning's Equation for Trapezoidal Channels 
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Trial and Error Solutions 

A trial and error procedure for solving Manning's Equation is used to compute the normal depth of flow in 
a uniform channel when the channel shape, slope, roughness, and design discharge are known.  For 
purposes of the trial and error process, Manning's Equation can be arranged as: 

 AR2/3 = (Qn)/(1.49 S1/2) (3.4) 

 where: 

  A = cross-sectional area (ft) 

  R = hydraulic radius (ft) 

  Q = discharge rate for design conditions (cfs) 

  n = Manning's roughness coefficient  

  S = slope of the energy grade line (ft/ft) 
 
To determine the normal depth of flow in a channel by the trial and error process, trial values of depth are 
used to determine A, P, and R for the given channel cross section.  Trial values of AR2/3 are computed 
until the equality of Equation 3.4 is satisfied such that the design flow is conveyed for the slope and 
selected channel cross section. 

 
Graphical procedures for simplifying trial and error solutions are presented in Figure 3.5 for trapezoidal 
channels.  Computer programs are also available for these calculations. 
 
Step 1 Determine input data, including design discharge, Q, Manning's n value, channel bottom width, 

b, channel slope, S, and channel side slope, z. 
 
Step 2 Calculate the trapezoidal conveyance factor using the equation: 

 KT = (Qn)/(b8/3S1/2) (3.5) 

 where: 

  KT = trapezoidal open channel conveyance factor 

  Q = discharge rate for design conditions (cfs) 

  n = Manning's roughness coefficient  

  b = bottom width (ft) 

  S = slope of the energy grade line (ft/ft) 
 
Step 3 Enter the x-axis of Figure 3.5 with the value of KT calculated in Step 2 and draw a line vertically 

to the curve corresponding to the appropriate z value from Step 1. 
 
Step 4 From the point of intersection obtained in Step 3, draw a horizontal line to the y-axis and read 

the value of the normal depth of flow over the bottom width, d/b. 
 
Step 5 Multiply the d/b value from Step 4 by b to obtain the normal depth of flow. 
 
Note:  If bends are considered, refer to Equation 3.11 
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Figure 3.5 Trapezoidal Channel Capacity Chart 
(Source:  Nashville Stormwater Management Manual, 1988) 
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3.2.5 Critical Flow Calculations 

Background 

In the design of open channels, it is important to calculate the critical depth in order to determine if the 
flow in the channel will be subcritical or supercritical.  If the flow is subcritical it is relatively easy to handle 
the flow through channel transitions because the flows are tranquil and wave action is minimal.  In 
subcritical flow, the depth at any point is influenced by a downstream control, which may be either the 
critical depth or the water surface elevation in a pond or larger downstream channel.  In supercritical flow, 
the depth of flow at any point is influenced by a control upstream, usually critical depth.  In addition, the 
flows have relatively shallow depths and high velocities.  Hydraulic jumps are possible under these 
conditions and consideration should be given to stabilizing the channel. 
 
Critical depth depends only on the discharge rate and channel geometry.  The general equation for 
determining critical depth is expressed as: 

 Q2/g = A3/T (3.6) 

 where: 

  Q = discharge rate for design conditions (cfs) 

  g = acceleration due to gravity (32.2 ft/sec2) 

  A = cross-sectional area (ft2) 

  T = top width of water surface (ft) 
 
 Note: A trial and error procedure is needed to solve Equation 3.6. 
 

Semi-Empirical Equations 

Semi-empirical equations (as presented in Table 3.7) or section factors (as presented in Figure 3.6) can 
be used to simplify trial and error critical depth calculations.  The following equation is used to determine 
critical depth with the critical flow section factor, Z: 

 Z = Q/(g0.5) (3.7) 

 where: 

  Z = critical flow section factor 

  Q = discharge rate for design conditions (cfs) 

  g = acceleration due to gravity (32.3 ft/sec2) 
 
The following guidelines are given for evaluating critical flow conditions of open channel flow: 

 A normal depth of uniform flow within about 10% of critical depth is unstable and should be avoided in 
design, if possible. 

 If the velocity head is less than one-half the mean depth of flow, the flow is subcritical. 

 If the velocity head is equal to one-half the mean depth of flow, the flow is critical. 

 If the velocity head is greater than one-half the mean depth of flow, the flow is supercritical. 
 
Note:  The head is the height of water above any point, plane, or datum of reference.  The velocity head 
in flowing water is calculated as the velocity squared divided by 2 times the gravitational constant (V2/2g). 
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The Froude number, Fr, calculated by the following equation, is useful for evaluating the type of flow 
conditions in an open channel: 

 Fr = v/(gA/T)0.5 (3.8) 

 where: 

  Fr = Froude number (dimensionless) 

  v = velocity of flow (ft/s) 

  g = acceleration of gravity (32.2 ft/sec2) 

  A = cross-sectional area of flow (ft2) 

  T = top width of flow (ft) 
 
If Fr is greater than 1.0, flow is supercritical; if it is under 1.0, flow is subcritical.  Fr is 1.0 for critical flow 
conditions. 
 

Table 3.7 Critical Depth Equations for Uniform Flow in Selected Channel Cross Sections 

Channel Type1 
Semi-Empirical Equations2 for 

Estimating Critical Depth Range of Applicability 

1. Rectangular3 dc = [Q2/(gb2)]1/3 N/A 

2. Trapezoidal3 dc = 0.81[Q2/(gz0.75b1.25)]0.27 - b/30z 
0.1 < 0.5522 Q/b2.5 < 0.4 
For 0.5522 Q/b2.5 < 0.1, use 
rectangular channel equation 

3. Triangular3 dc = [(2Q2)/(gz2)]1/5 N/A 

4. Circular4 dc = 0.325(Q/D)2/3 + 0.083D 0.3 < dc/D < 0.9 

5. General5 (A3/T) = (Q2/g) N/A 

 where: 

  dc = critical depth (ft) 

  Q = design discharge (cfs) 

  g = acceleration due to gravity (32.3 ft/s2) 

  b = bottom width of channel (ft) 

  z = side slopes of a channel (horizontal to vertical) 

  D = diameter of circular conduit (ft) 

  A = cross-sectional area of flow (ft2) 

  T = top width of water surface (ft) 

1 See Figure 3.6 for channel sketches 
2 Assumes uniform flow with the kinetic energy coefficient equal to 1.0 
3 Reference: French (1985) 
4 Reference: USDOT, FHWA, HDS-4 (1965) 
5 Reference: Brater and King (1976) 

 
If the water surface profile in a channel transitions from supercritical flow to subcritical flow, a hydraulic 
jump must occur.  The location of the hydraulic jump and its sequent depth are critical to proper design of 
free flow conveyances.  To determine the location of a hydraulic jump, the standard step method is used 
to compute the water surface profile and specific force (momentum principle) and specific energy 
relationships are used.  For computational methods refer to Chow, 1959, TxDOT, 2002, and Mays, 1999.  
The HEC-RAS computer program can be used to compute water surface profiles for both subcritical and 
supercritical flow regimes. 
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Figure 3.6 Open Channel Geometric Relationships for Various Cross Sections 
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3.2.6 Vegetative Design 

Introduction 

A two-part procedure is recommended for final design of temporary and vegetative channel linings.  Part 
1, the design stability component, involves determining channel dimensions for low vegetative retardance 
conditions, using Class D as defined in Table 3.6.  Part 2, the design capacity component, involves 
determining the depth increase necessary to maintain capacity for higher vegetative retardance 
conditions, using Class C as defined in Table 3.6.  If temporary lining is to be used during construction, 
vegetative retardance Class E should be used for the design stability calculations. 
 
If the channel slope exceeds 10%, or a combination of channel linings will be used, additional procedures 
not presented below are required.  References include HEC-15 (USDOT, FHWA, 1986) and HEC-14 
(USDOT, FHWA, 1983).  
 

Design Stability 

The following are the steps for design stability calculations: 

Step 1 Determine appropriate design variables, including discharge, Q, bottom slope, S, cross section 
parameters, and vegetation type. 

Step 2 Use Table 3.3 to assign a maximum velocity, vm based on vegetation type and slope range. 

Step 3 Assume a value of n and determine the corresponding value of vR from the n versus vR curves 
in Figure 3.2.  Use retardance Class D for permanent vegetation and E for temporary 
construction. 

Step 4 Calculate the hydraulic radius using the equation: 

 R = (vR)/vm (3.9) 

 where: 

  R = hydraulic radius of flow (ft) 

  vR = value obtained from Figure 3.2 in Step 3 

  vm = maximum velocity from Step 2 (ft/s) 

Step 5 Use the following form of Manning's Equation to calculate the value of vR: 

 vR = (1.49 R5/3 S1/2)/n (3.10) 

 where: 

  vR = calculated value of vR product 

  R = hydraulic radius value from Step 4 (ft) 

  S = channel bottom slope (ft/ft) 

  n = Manning's n value assumed in Step 3 

Step 6 Compare the vR product value obtained in Step 5 to the value obtained from Figure 3.2 for the 
assumed n value in Step 3.  If the values are not reasonably close, return to Step 3 and repeat 
the calculations using a new assumed n value. 

Step 7 For trapezoidal channels, find the flow depth using Figures 3.4 or 3.5, as described in Section 
3.2.4.  The depth of flow for other channel shapes can be evaluated using the trial and error 
procedure described in Section 3.2.4. 

Step 8 If bends are considered, calculate the length of downstream protection, Lp, for the bend, using 
Figure 3.7.  Provide additional protection, such as gravel or riprap in the bend and extending 
downstream for length, Lp. 
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Design Capacity 

The following are the steps for design capacity calculations: 

Step 1 Assume a depth of flow greater than the value from Step 7 above and compute the waterway 
area and hydraulic radius (see Figure 3.6 for equations). 

Step 2 Divide the design flow rate, obtained using appropriate procedures from the Hydrology 
Technical Manual, by the waterway area from Step 1 to find the velocity. 

Step 3 Multiply the velocity from Step 2 by the hydraulic radius from Step 1 to find the value of vR. 

Step 4 Use Figure 3.2 to find a Manning's n value for retardance Class C based on the vR value from 
Step 3. 

Step 5 Use Manning's Equation (Equation 3.1) or Figure 3.3 to find the velocity using the hydraulic 
radius from Step 1, Manning's n value from Step 4, and appropriate bottom slope. 

Step 6 Compare the velocity values from Steps 2 and 5.  If the values are not reasonably close, return 
to Step 1 and repeat the calculations. 

Step 7 Add an appropriate freeboard to the final depth from Step 6.  Generally, 20% is adequate. 

Step 8 If bends are considered, calculate super-elevation of the water surface profile at the bend using 
the equation: 

 d = (v2T)/(gRc) (3.11) 

 where: 

  d = super-elevation of the water surface profile due to the bend (ft) 

  v = average velocity from Step 6 (ft/s) 

  T = top width of flow (ft) 

  g = acceleration of gravity (32.2 ft/sec2) 

  Rc = mean radius of the bend (ft) 
  

 Note: Add freeboard consistent with the calculated d. 
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Figure 3.7 Protection Length, Lp, Downstream of Channel Bend 
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3.2.7 Stone Riprap Design 
Introduction 

A number of agencies and researchers have studied and developed empirical equations to estimate the 
required size of rock riprap to resist various hydraulic conditions, including the U.S. Army Corps of 
Engineers (USACE), Natural Resource Conservation Service (NRCS), and the Federal Highway 
Administration (FHWA).  As with all empirical equations based on the results of laboratory experiments, 
they must be used with an understanding of the range of data on which they are based. 
 
The following methods give design guidance for designing stone riprap for open channels.  Design 
guidance for designing stone riprap for culvert outfall protection is also provided in this section.  Section 
4.0 gives additional guidance on the design of riprap aprons for erosion protection at outfalls, and the 
design of riprap basins for energy dissipation. 
 

Method #1:  Maynord & Reese 

The following procedure is based on results and analysis of laboratory and field data (Maynord, 1987; 
Reese, 1984; Reese, 1988).  This procedure applies to riprap placement in both natural and prismatic 
channels and has the following assumptions and limitations: 

 Minimum riprap thickness equal to d100 

 The value of d85/d15 less than 4.6 

 Froude number less than 1.2 

 Side slopes up to 2:1 

 A safety factor of 1.2 

 Maximum velocity less than 18 feet per second 

 If significant turbulence is caused by boundary irregularities, such as vertical drops, obstructions, or 
structures, this procedure is not applicable. 

 
Procedure 

Following are the steps in the procedure for riprap design using the method by Maynord & Reese: 

Step 1 Determine the average velocity in the main channel for the design condition.  Manning's n 
values for riprap can be calculated from the equation: 

 n = 0.0395 (d50)1/6 (3.12) 

 where: 

  n = Manning's roughness coefficient for stone riprap 

  d50 = diameter of stone for which 50%, by weight, of the gradation is finer (ft) 

Step 2 If rock is to be placed at the outside of a bend, multiply the velocity determined in Step 1 by the 
bend correction coefficient, Cb, given in Figure 3.8 for either a natural or prismatic channel.  
This requires determining the channel top width, T, just upstream from the bend and the 
centerline bend radius, Rb. 

Step 3 If the specific weight of the stone varies significantly from 165 pounds per cubic foot, multiply 
the velocity from Step 1 or 2 (as appropriate) by the specific weight correction coefficient, Cg, 
from Figure 3.9. 
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Step 4 Determine the required minimum d30 value from Figure 3.10, or from the equation: 

 d30/D = 0.193 Fr2.5 (3.13) 

 where: 

  d30 = diameter of stone for which 30%, by weight, of the gradation is finer (ft) 

  D = depth of flow above stone (ft) 

  Fr = Froude number (see Equation 3.8), dimensionless 

  v = mean velocity above the stone (ft/s) 

  g = acceleration of gravity (32.2 ft/sec) 

 

Figure 3.8 Riprap Lining Bend Correction Coefficient 
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Figure 3.9 Riprap Lining Specific Weight Correction Coefficient 
(Source:  Nashville Stormwater Management Manual, 1988) 

  



 iSWMTM Technical Manual Hydraulics 

Open Channel Design HA-149 
April 2010, Revised 9/2014 

Figure 3.10 Riprap Lining d30 Stone Size – Function of Mean Velocity and Depth 
 
Step 5 Determine available riprap gradations.  A well graded riprap is required.  The diameter of the 

largest stone, d100, should not be more than 1.5 times the d50 size.  Blanket thickness should be 
greater than or equal to d100 except as noted below.  Sufficient fines (below d15) should be 
available to fill the voids in the larger rock sizes.  The stone weight for a selected stone size can 
be calculated from the equation: 

 W = 0.5236 SWs d3 (3.14) 

 where: 

  W = stone weight (lbs) 

  d = selected stone diameter (ft) 

  SWs = specific weight of stone (lbs/ft3) 
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Filter fabric or a filter stone layer should be used to prevent turbulence or groundwater seepage 
from removing bank material through the stone or to serve as a foundation for unconsolidated 
material.  Layer thickness should be increased by 50% for underwater placement. 

Step 6 If d85/d15 is between 2.0 and 2.3 and a smaller d30 size is desired, a thickness greater than d100 
can be used to offset the smaller d30 size.  Figure 3.11 can be used to make an approximate 
adjustment using the ratio of d30 sizes.  Enter the y-axis with the ratio of the desired d30 size to 
the standard d30 size and find the thickness ratio increase on the x-axis.  Other minor gradation 
deficiencies may be compensated for by increasing the stone blanket thickness. 

Step 7 Perform preliminary design, ensuring that adequate transition is provided to natural materials 
both up and downstream to avoid flanking and that toe protection is provided to avoid riprap 
undermining. 

 

 

Figure 3.11 Riprap Lining Thickness Adjustment for d85/d15 = 1.0 to 2.3 
(Source:  Maynord, 1987) 
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Method #2:  Gregory 

The following procedure is based on excerpts from a paper prepared by Garry Gregory (June, 1987) and 
has been widely used in the Dallas-Fort Worth area for riprap design. 
 
Procedure 

Following are the steps in the procedure for riprap design using the method by Gregory: 

Step 1 Calculate the boundary shear (tractive stress or tractive force) by: 

 To = UwRS  (3.15) 

 where: 

  To = average tractive stress on channel bottom (lb/ft2) 

  Uw = unit weight of water (62.4 lb/ft3) 

  R = hydraulic radius of channel (ft) 

  S = slope of energy gradient (ft/ft) 

 To‘ = To(1-(sin2F/sin2Q))0.5 (3.16) 

 where: 

  To‘ = average tractive stress on channel side slopes (lb/ft2) 

  F = angle of side slope with the horizontal 

  Q = angle of repose of riprap (approximately 40°) 

The greater value of To or To‘ governs. 

Step 2 Determine the tractive stress in a bend in the channel by: 

 Tb = 3.15T(r/w)-0.5 (3.17) 

 where: 

  Tb = local tractive stress in the bend (lb/ft2) 

  T = the greater of To or To‘ from Equations 3.15 and 3.16 

  r = center-line radius of the bend (ft) 

  w = water surface width at upstream end of bend (ft) 

Step 3 Determine D50 size of riprap stone (size at which 50% of the gradation is finer weight) from: 

 D50 = T/0.04(Us-Uw) (3.18) 

 where: 

  D50 = required average size of riprap stone (ft) 

  T = the greater of To or To‘ from Equations 3.15 and 3.16 

  Us = saturated surface dry (SSD) unit weight of stone (lb/ft3) 

  Uw = unit weight of water (62.4 lb/ft3) 

Step 4 Select minimum riprap thickness required from grain size curves in Figures 3.12 through 3.17.  
Select from smaller side of band at 50% finer gradation. 

Step 5 Select riprap gradations table (Figures 3.18 and 3.19) based on riprap thickness selected in 
Step 4. 

Step 6 Select bedding thickness from grain size curves in Figures 3.12 through 3.17, which was used 
to select the riprap thickness in Step 4.  Note:  The bedding thicknesses included in Figures 
3.12 through 3.17 are based on using a properly designed geotextile underneath the bedding.  
If a geotextile is not used, the bedding thickness must be increased to a minimum of 9 inches 
for 24 inch and 30 inch riprap and a minimum of 12 inches for the 36 inch riprap. 



 iSWMTM Technical Manual Hydraulics 

Open Channel Design HA-152 
April 2010, Revised 9/2014 

Step 7 To provide stability in the riprap layer the riprap gradations should meet the following criteria for 
GRADATION INDEX: 

 GRADATION INDEX: [D85/D50 + D50/D15] ≤ 5.5 (3.19) 

 where:  D85, D50, and D15 are the riprap grain sizes (mm) of which 85%, 50%, and 15% 
respectively are finer by weight.  

Step 8 To provide stability of the bedding layer the bedding should meet the following filter criteria with 
respect to the riprap: 

 D15/d85 <5 < D15/d15 < 40 (3.20) 

 D50/d50 < 40  (3.21) 

 where:  D refers to riprap sizes, and d refers to bedding sizes, both in mm.  

Step 9 The geotextile underneath the bedding should be designed as a filter to the soil. 

Step 10 Typical riprap design sections are shown in Figures 3.20 and 3.21, from the USACE publication 
EM1110-2-160. 

 

Culvert Outfall Protection 

The following procedure is used to design riprap for protection at culvert outfalls. 
 
Step 1 Determine D50 size of riprap determined from: 

 D50 = √V/[1.8√(2g(Us-Uw)/Uw)] (3.22) 

Step 2 Select riprap and bedding from Figures 3.12 through 3.17 using D50 from Equation 3.22. 

Step 3 Select gradations from tables in Figures 3.18 and 3.19. 
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Figure 3.12 Grain Size Curve for 8” Riprap and 6” Bedding 
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Figure 3.13 Grain Size Curve for 12” Riprap and 6” Bedding 
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Figure 3.14 Grain Size Curve for 18” Riprap and 6” Bedding 
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Figure 3.15 Grain Size Curve for 24” Riprap and 6” Bedding 
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Figure 3.16 Grain Size Curve for 30” Riprap and 9” Bedding 



 iSWMTM Technical Manual Hydraulics 

Open Channel Design HA-158 
April 2010, Revised 9/2014 

 

Figure 3.17 Grain Size Curve for 36” Riprap and 9” Bedding 
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Figure 3.18 Riprap Gradation Tables for 6”, 8”, 9”, and 12” Thickness of Riprap 
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Figure 3.19 Riprap Gradation Tables for 18”, 24”, 30”, and 36” Thickness of Riprap 
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Figure 3.20 Typical Riprap Design Cross Sections 
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Figure 3.21 Typical Riprap Design for Revetment Toe Protection 
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3.2.8 Gabion Design 
Introduction 

Gabions come in three basic forms, the gabion basket, gabion mattress, and sack gabion. All three types 
consist of wire mesh baskets filled with cobble or small boulder material. The fill normally consists of rock 
material but other materials such as bricks have been used to fill the baskets. The baskets are used to 
maintain stability and to protect streambanks and beds.  
 
The difference between a gabion basket and a gabion mattress is the thickness and the aerial extent of 
the basket. A sack gabion is, as the name implies, a mesh sack that is filled with rock material. The 
benefit of gabions is that they can be filled with rocks that would individually be too small to withstand the 
erosive forces of the stream. The gabion mattress is shallower (0.5 to 1.5 ft) than the basket and is 
designed to protect the bed or banks of a stream against erosion.  
 
Gabion baskets are normally much thicker (about 1.5 to 3 ft) and cover a much smaller area. They are 
used to protect banks where mattresses are not adequate or are used to stabilize slopes (Figure 3.22), 
construct drop structures, pipe outlet structures, or nearly any other application where soil must be 
protected from the erosive forces of water. References to gabions in this manual refer generally to both 
mattresses and baskets. Sack gabions are rarely used in the United States and are not discussed.  
 

Gabion baskets can be made from either welded or woven wire 
mesh. The wire is normally galvanized to reduce corrosion but 
may be coated with plastic or other material to prevent corrosion 
and/or damage to the wire mesh containing the rock fill. New 
materials such as Tensar, a heavy-duty polymer plastic material, 
have been used in some applications in place of the wire mesh. If 
the wire baskets break, either through corrosion, vandalism, or 
damage from debris or bed load, the rock fill in the basket can be 
lost and the protective value of the method endangered.  
Gabions are often used where available rock size is too small to 
withstand the erosive and tractive forces present at a project site.  
The available stone size may be too small due to the cost of 
transporting larger stone from remote sites, or the desire to have 

Figure 3.22 Gabion Baskets Installed for Slope Stabilization along a Stream 
 
a project with a smoother appearance than obtained from riprap or other methods.  Gabions also require 
about one third the thickness of material when compared to riprap designs.  Riprap is often preferred, 
however, due to the low labor requirements for its placement. 
 
The science behind gabions is fairly well established, with numerous manufacturers providing design 
methodology and guidance for their gabion products.  Dr. Stephen T. Maynord of the U.S. Army Corps of 
Engineers Research and Development Center in Vicksburg, Mississippi, has also conducted research to 
develop design guidance for the installation of gabions. Two general methods are typically used to 
determine the stability of gabion baskets in stream channels, the critical shear stress calculation and the 
critical velocity calculation. A software package known as CHANLPRO has been developed by Dr. 
Maynord (Maynord et al. 1998).  
 
Manufacturers have generated extensive debate regarding the use and durability of welded wire baskets 
versus woven wire baskets in project design and construction. Project results seem to indicate that 
performance is satisfactory for both types of mesh.  
 
The rocks contained within the gabions provide substrates for a wide variety of aquatic organisms. 
Organisms that have adapted to living on and within the rocks have an excellent home, but vegetation 
may be difficult to establish unless the voids in the rocks contained within the baskets are filled with soil or 
a planting bed mixture.  
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If large woody vegetation is allowed to grow in the gabions, there is a risk that the baskets will break 
when the large woody vegetation is uprooted or as the root and trunk systems grow. Thus, it is normally 
not acceptable to allow large woody vegetation to grow in the baskets. The possibility of damage must be 
weighed against the desirability of vegetation on the area protected by gabions and the stability of the 
large woody vegetation.  If large woody vegetation is kept out of the baskets, grasses and other desirable 
vegetation types may be established and provide a more aesthetic and ecologically desirable project than 
gabions alone.  
 

Design 

Primary design considerations for gabions and mattresses are: 1) foundation stability; 2) sustained 
velocity and shear-stress thresholds that the gabions must withstand; and 3) toe and flank protection. The 
base layer of gabions should be placed below the expected maximum scour depth. Alternatively, the toe 
can be protected with mattresses that will fall into any scoured areas without compromising the stability of 
the bank or bed protection portion of the project. If bank protection does not extend above the expected 
water surface elevation for the design flood, measures such as tiebacks to protect against flanking should 
be installed.  
 
The use of a filter fabric behind or under the gabion baskets to prevent the movement of soil material 
through the gabion baskets is an extremely important part of the design process. This migration of soil 
through the baskets can cause undermining of the supporting soil structure and failure of the gabion 
baskets and mattresses.  
 
Primary Design Considerations 
 
The major consideration in the design of gabion structures is the expected velocity at the gabion face. 
The gabion must be designed to withstand the force of the water in the stream.  
 
Since gabion mattresses are much shallower and more subject to movement than gabion baskets, care 
should be taken to design the mattresses such that they can withstand the forces applied to them by the 
water. However, mattresses have been used in application where very high velocities are present and 
have performed well. But, projects using gabion mattresses should be carefully designed.  
 
The median stone size for a gabion mattress can be determined from the following equation:  

 dm = SfCsCvd[(Uw/(Us - Uw ))0.5(V/√(gdK1))]2.5 (3.23) 

 where: 

  dm = average rock diameter in gabions (ft) 

  Sf = safety factor (1.1 minimum) 

  Cs = stability coefficient (usually 0.1) 

  Cv = velocity distribution coefficient = 1.283-0.2log(r/w) (minimum of 1.0) and equals 1.25 at 
end of dikes and concrete channels 

  r = center-line bend radius of main channel flow (ft) 

  w = water surface width of main channel (ft) 

  d = local flow depth at V (ft) 

  g = acceleration due to gravity (32.2 ft/s2) 

  V = depth-averaged velocity (ft/s) 

  K1 = side slope correction factor (Table 3.8) 

  Uw = unit weight of water (62.4 lb/ft3) 

  Us = unit weight of stone (lb/ft3)  
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Table 3.8 Values of K1 for various Side Slopes to be 
 used in Equation 3.23 

Side Slope K1
 

1V : 1H 0.46 

1V : 1.5H 0.71 

1V : 2H 0.88 

1V : 3H 0.98 

<1V : 4H 1.0 

 
 
Equation 3.23 was developed to design stone size such that the 
movement of filler stone in the mattresses is prevented.  This 
eliminates deformation that can occur when stone sizes are not 
large enough to withstand the forces of the water.  The result of 
mattresses deformation is stress on the basket wire and 
increases in resistance to flow and the likelihood of basket 
failure.  The upper portion of Figure 3.23 shows an undeformed 
gabion, while the lower portion shows how gabions deform 
under high-velocity conditions.  Maccaferri Gabions gives 
guidance on sizing stone and allowable velocities for gabion 
baskets and mattresses, shown in Table 3.9. 
 

Figure 3.23 Gabion Mattress Showing Deformation of Mattress Pockets under High 
Velocities 

 

Table 3.9 Stone Sizes and Allowable Velocities for Gabions 

Type Thickness (ft) Filling Stone Range D50 
Critical 

Velocity 
Limit Velocity 

Mattress 0.5 3 – 4” 3.4” 11.5 13.8 

 0.5 3 – 6” 4.3” 13.8 14.8 

 0.75 3 – 4” 3.4” 14.8 16 

 0.75 3 – 6” 4.7” 14.8 20 

 1.0 3 – 5” 4” 13.6 18 

 1.0 4 – 6” 5” 16.4 21 

Basket 1.5 4 – 8” 6” 19 24.9 

 1.5 5 – 10” 7.5” 21 26.2 

 

When the data in Table 3.9 are compared to Equation 3.22, if V = 11.5, Cs = 0.1, Cv = 1.0, K1 = 0.71, ,Us = 

150 lb/ft3 and Sf = 1.1, the local flow depth must be on the order of 25 ft in order to arrive at the stone 
diameter of 3.4 in. shown in Table 3.9. Designers should use Equation 3.23 to take the depth of flow into 
account.  Table 3.9 does, however, give some general guidelines for fill sizes and is a quick reference for 
maximum allowable velocities.  
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Maccaferri also gives guidance on the stability of gabions in terms of shear stress limits.  The following 
equation gives the shear for the bed of the channel as: 
 

 tb = UwSd  (3.24) 

 where S = bed or water surface slope through the reach (ft/ft)  

The bank shear is generally taken as 75 percent of the bed shear, i.e., 

 tm = 0.75 tm (3.25) 

These values are then compared to the critical stress for the bed calculated by the following equation:  

 tc = 0.10(Us-Uw)dm (3.26) 

with critical shear stress for the banks given as:  

 ts = tc√(1-(sin2Q/0.4304)) (3.27) 

 where Q = angle of the bank rotated up from horizontal. 

A design is acceptable if tb < tc and tm < ts.  If either tb > tc or tm > ts then a check must be made to 

see if they are less than 120 percent of tb and ts.  If the values are less than 120 percent of tb and ts 

the gabions will not be subject to more than what Maccaferri defines as “acceptable” deformation.  
However it is recommended that the stone size be increased to limit deformation if possible. 
 

Research has indicated that stone in the gabion mattress should be sized such that the largest stone 

diameter is not more than about two times the diameter of the smallest stone diameter and the mattress 

should be at least twice the depth of the largest stone size. The size range should, however, vary by 

about a factor of two to ensure proper packing of the stone material into the gabions. Since the 

mattresses normally come in discrete sizes, i.e. 0.5, 1.0, and 1.5 ft in depth, normal practice is to size the 

stone and then select the basket depth that is deep enough to be at least two times the largest stone 

diameter. The smallest stone should also be sized such that it cannot pass through the wire mesh.   
 
Stability of Underlying Bed and Bank Material 
 

Another critical consideration is the stability of the gabion foundation.  This includes both geotechnical 

stability and the resistance of the soil under the gabions to the erosive forces of the water moving 

through the gabions. If there is any question regarding the stability of the foundation, i.e. possibility of 

rotational failures, slip failures, etc., a qualified geotechnical engineer should be consulted prior to and 

during the design of the bank/channel protection. Several manufacturers give guidance on how to check 

for geotechnical failure. 

 

One of the critical factors in determining 

stability is the velocity of the water that 

passes through the gabions and reaches the 

soil behind the gabion.  The water velocity 

under the filter fabric, i.e. water that moves 

through the gabions and filter fabric, is 

estimated to be one-fourth to one-half of the 

velocity at the mattress/filter interface. 

Figure 3.24 Front-step and Rear-step Gabion Layout 
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The velocity at the mattress/filter interface, Vb, is estimated to be  

 Vb = 1.486√S(dm/2)2/3/nf (3.28) 

 where nf = 0.02 for filter fabric, 0.022 for gravel filter material 

If the underlying soil material is not stable, additional filter material must be installed under the gabions to 

ensure soil stability. 

 

The limit for velocity on the soil is different for each type of soil. The limit for cohesive soils is obtained 
from a chart, while maximum allowable velocities for other soil types are obtained by calculating Ve, the 
maximum velocity allowable at the soil interface, and comparing it to V" the residual velocity on the bed, 
i.e. under the gabion mattress and under the filter fabric.  Ve for loose soils is equal to 16.1d2

 

while Vf is 
calculated by:  

 Vf = 1.486S√Va(dm/2)2/3/nf (3.29) 

 where Va = average channel velocity (ft/s) 

If Vf is larger than two to four times Ve, a gravel filter is required to further reduce the water velocity at the 
soil interface under the gabions until Vf is in an acceptable range. To check for the acceptability of the 
filter use the average gravel size for dm in Equation 5.28. If the velocity Vf is still too high, the gravel size 
should be reduced to obtain an acceptable value for Vf.  
 

Other Design Considerations 

 

It may be possible to combine gabions with less harsh methods of bank protection on the upper bank and 
still achieve the desired result of a stable channel.  Provisions for large woody vegetation and a more 
aesthetically pleasing project may also be used on the upper banks or within the gabions.  However, the 
stability of vegetation or other upper bank protection should be carefully analyzed to ensure stability of the 
upper bank area.  A failure in the upper bank region can adversely affect gabion stability and lead to 
project failure. 
 

3.2.9 Uniform Flow – Example Problems 

Example 1 -- Direct Solution of Manning's Equation 

Use Manning's Equation to find the velocity, v, for an open channel with a hydraulic radius value of 0.6 ft, 
an n value of 0.020, and slope of 0.003 ft/ft.  Solve using Figure 3.3: 

 Connect a line between the slope scale at 0.003 and the roughness scale at 0.020 and note the 
intersection point on the turning line. 

 Connect a line between that intersection point and the hydraulic radius scale at 0.6 ft and read the 
velocity of 2.9 ft/s from the velocity scale.  

 
Example 2 -- Grassed Channel Design Stability 

A trapezoidal channel is required to carry 50 cfs at a bottom slope of 0.015 ft/ft.  Find the channel 
dimensions required for design stability criteria (retardance Class D) for a grass mixture. 

From Table 3.3, the maximum velocity, vm, for a grass mixture with a bottom slope less than 5% is 4 ft/s. 

Assume an n value of 0.035 and find the value of vR from Figure 3.2, vR = 5.4 
 

 Use Equation 3.9 to calculate the value of R:  R = 5.4/4 = 1.35 ft 

 Use Equation 3.10 to calculate the value of vR: 

 vR = [1.49 (1.35)5/3 (0.015)1/2]/0.035 = 8.60 
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 Since the vR value calculated in Step 4 is higher than the value obtained from Step 2, a higher n 
value is required and calculations are repeated.  The results from each trial of calculations are 
presented below: 

 

Assumed vR R vR 
  n Value (Figure 3.2) (Eq. 3.9) (Eq. 3.10) 

  0.035 5.40 1.35 8.60 
  0.038 3.8 0.95 4.41 
  0.039 3.4 0.85 3.57 
  0.040 3.2 0.80 3.15 

 Select n = 0.040 for stability criteria. 

 

 Use Figure 3.4 to select channel dimensions for a trapezoidal shape with 3:1 side slopes. 

 Qn = (50) (0.040) = 2.0,   S = 0.015 
 For b = 10 ft,   d = (10) (0.098) = 0.98 ft,   b = 8 ft,   d = (8) (0.14) = 1.12 ft 

 Select: 

  b = 10 ft, such that R is approximately 0.80 ft 

  z = 3 

  d = 1 ft 

  v = 3.9 ft/s (Equation 3.1) 

  Fr = 0.76 (Equation 3.8) 

  Flow is subcritical 

 Design capacity calculations for this channel are presented in Example 3 below.  

Example 3 -- Grassed Channel Design Capacity 

Use a 10-ft bottom width and 3:1 side-slopes for the trapezoidal channel sized in Example 2 and find the 
depth of flow for retardance Class C. 

 Assume a depth of 1.0 ft and calculate the following (see Figure 3.6): 

 A = (b + zd) d = [10 + (3) (1)] (1) = 13.0 square ft 

 R = [(b + zd) d]/{b + [2d(1 + z2)0.5]} = {[10+(3)(1)]1}/{10+[(2)(1)(1+32)0.5]} 

 R = 0.796 ft 

 Find the velocity:  v = Q/A = 50/13.0 = 3.85 ft/s 

 Find the value of vR:  vR = (3.85) (0.796) = 3.06 

 Using the vR product from Step 3, find Manning's n from Figure 3.2 for retardance Class C (n = 
0.047) 

 Use Figure 3.3 or Equation 3.1 to find the velocity for S = 0.015, R = 0.796, and n = 0.047:  v = 3.34 
ft/s 

 Since 3.34 ft/s is less than 3.85 ft/s, a higher depth is required and calculations are repeated.  Results 
from each trial of calculations are presented below: 
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 Assumed   Velocity Manning's 
 Depth Area R Q/A vR n Velocity 
 (ft) (ft2) (ft) (ft/sec)  (Fig. 5.2) (Eq. 5.1) 

 1.0 13.00 0.796 3.85 3.06 0.047 3.34 
 1.05 13.81 0.830 3.62 3.00 0.047 3.39 
 1.1 14.63 0.863 3.42 2.95 0.048 3.45 
 1.2 16.32 0.928 3.06 2.84 0.049 3.54 
 

 Select a depth of 1.1 with an n value of 0.048 for design capacity requirements.  Add at least 0.2 ft for 
freeboard to give a design depth of 1.3 ft.  Design data for the trapezoidal channel are summarized as 
follows: 

 Vegetation lining = grass mixture, vm = 4 ft/s 

 Q = 50 cfs 

 b = 10 ft, d = 1.3 ft, z = 3, S = 0.015 
 Top width = (10) + (2) (3) (1.3) = 17.8 ft 

n (stability) = 0.040, d = 1.0 ft, v = 3.9 ft/s, Froude number = 0.76 (Equation 3.8) 
n (capacity) = 0.048, d = 1.1 ft, v = 3.45 ft/s, Froude number = 0.64 (Equation 3.8) 

 
Example 4 -- Riprap Design 

A natural channel has an average bankfull channel velocity of 8 ft per second with a top width of 20 ft and 
a bend radius of 50 ft.  The depth over the toe of the outer bank is 5 ft.  Available stone weight is 170 
lbs/ft3.  Stone placement is on a side slope of 2:1 (horizontal:vertical).  Determine riprap size at the 
outside of the bend. 

 Use 8 ft/s as the design velocity, because the reach is short and the bend is not protected. 

 Determine the bend correction coefficient for the ratio of Rb/T = 50/20 = 2.5.  From Figure 3.8, Cb = 
1.55.  The adjusted effective velocity is (8) (1.55) = 12.4 ft/s. 

 Determine the correction coefficient for the specific weight of 170 lbs from Figure 3.9 as 0.98.  The 
adjusted effective velocity is (12.4) (0.98) = 12.15 ft/s. 

 Determine minimum d30 from Figure 3.10 or Equation 3.13 as about 10 inches. 

 Use a gradation with a minimum d30 size of 10 inches. 

 (Optional)  Another gradation is available with a d30 of 8 inches.  The ratio of desired to standard 
stone size is 8/10 or 0.8.  From Figure 3.11, this gradation would be acceptable if the blanket 
thickness was increased from the original d100 (diameter of the largest stone) thickness by 35% (a 
ratio of 1.35 on the horizontal axis). 

 Perform preliminary design.  Make sure that the stone is carried up and downstream far enough to 
ensure stability of the channel and that the toe will not be undermined.  The downstream length of 
protection for channel bends can be determined using Figure 3.7. 

 

3.2.10 Gradually Varied Flow 

The most common occurrence of gradually varied flow in storm drainage is the backwater created by 
culverts, storm sewer inlets, or channel constrictions.  For these conditions, the flow depth will be greater 
than normal depth in the channel and the water surface profile should be computed using backwater 
techniques. 
 
Many computer programs are available for computation of backwater curves.  The most general and 
widely used programs are, HEC-RAS, developed by the U.S. Army Corps of Engineers and Bridge 
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Waterways Analysis Model (WSPRO) developed for the Federal Highway Administration.  These 
programs can be used to compute water surface profiles for both natural and artificial channels. 
 
For prismatic channels, the backwater calculation can be computed manually using the Direct Step 
method (Chow, 1959, TxDOT, 2002).  In the Direct Step method an increment of water depth is chosen, 
and the distance over which the depth change occurs is computed.  This method is often used in 
association with culvert hydraulics.  It is most accurate when the slope and depth increments are small.  It 
is appropriate for prismatic channel sections which occur in most conduits, and can be useful when 
estimating both supercritical and subcritical profiles.  For supercritical flow, the water surface profile is 
computed downstream.  For subcritical flow, the water surface profile is computed upstream. 
 
For an irregular nonuniform channel, the Standard Step method is recommended, although it is a more 
tedious and iterative process.  The use of HEC-RAS is recommended for Standard Step calculations. 
 
Cross sections for water surface profile calculations should be normal to the direction of flood flow.  The 
number of sections required will depend on the irregularity the designed waterway.  Channel cross 
sections will be required at each location along the waterway where there are changes in channel shape 
or dimension, changes in the flowline slope, and changes in vegetation or channel lining.  These sections 
are in addition to any sections necessary to define obstructions such as culverts, bridges, damns, energy 
dissipation features, or aerial crossings (pipelines).  Sections should usually be no more than 4 to 5 
channel widths apart or 100 feet apart for ditches or streams and 500 feet apart for floodplains, unless the 
channel is very regular.  
 

3.2.11 Rectangular, Triangular and Trapezoidal Open Channel Design 

Introduction 

The Federal Highway Administration has prepared numerous design figures to aid in the design of open 
channels.  Copies of these figures, a brief description of their use, and several example design problems 
are presented.  For design conditions not covered by the figures, a trial and error solution of Manning’s 
Equation must be used.  However, it is anticipated that available software programs will be the first choice 
for solving these design computations. 
 

Description of Figures 

Figures given in FHWA, HDS No. 3, 1973 and Atlanta Regional Commission, 2001 are for the direct 
solution of the Manning’s Equation for various sized open channels with rectangular, triangular, and 
trapezoidal cross sections.  Each figure (except for the triangular cross section) is prepared for a channel 
of given bottom width and a particular value of Manning's n. 
 
The figures for rectangular and trapezoidal cross section channels are used the same way.  The abscissa 
scale of discharge in cubic feet per second (cfs), and the ordinate scale is velocity in feet per second 
(ft/s).  Both scales are logarithmic.  Superimposed on the logarithmic grid are steeply inclined lines 
representing depth (ft), and slightly inclined lines representing channel slope (ft/ft).  A heavy dashed line 
on each figure shows critical flow conditions.  Auxiliary abscissa and ordinate scales are provided for use 
with other values of n and are explained in the example problems.  In the figures, interpolations may be 
made not only on the ordinate and abscissa scales but also between the inclined lines representing depth 
and slope. 
 
The chart for a triangular cross section (see Figure 1.2) is in nomograph form.  It may be used for street 
sections with a vertical (or nearly vertical) curb face.  The nomograph also may be used for shallow 
V-shaped sections by following the instructions on the chart. 
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Instructions for Rectangular and Trapezoidal Figures 

Figures such as Figure 3.25 provide a solution of the Manning equation for flow in open channels of 
uniform slope, cross section, and roughness, provided the flow is not affected by backwater and the 
channel has a length sufficient to establish uniform flow. 
 
For a given slope and channel cross section, when n is 0.015 for rectangular channels or 0.03 for 
trapezoidal channels, the depth and velocity of uniform flow may be read directly from the figure for that 
size channel.  The initial step is to locate the intersection of a vertical line through the discharge 
(abscissa) and the appropriate slope line.  At this intersection, the depth of flow is read from the depth 
lines, and the mean velocity is read on the ordinate scale. 
 
The procedure is reversed to determine the discharge at a given depth of flow.  Critical depth, slope, and 
velocity for a given discharge can be read on the appropriate scale at the intersection of the critical curve 
and a vertical line through the discharge. 
 
Auxiliary scales, labeled Qn (abscissa) and Vn (ordinate), are provided so the figures can be used for 
values of n other than those for which the charts were basically prepared.  To use these scales, multiply 
the discharge by the value of n and use the Qn and Vn scales instead of the Q and V scales, except for 
computation of critical depth or critical velocity.  To obtain normal velocity V from a value on the Vn scale, 
divide the value by n.  The following examples will illustrate these points. 
 
Example Design Problem 1 

Given: A rectangular concrete channel 5 ft wide with n = 0.015, .06 percent slope (S = .0006), 
discharging 60 cfs. 

 
Find: Depth, velocity, and type of flow 
 
Procedure: 

1. From Section 3.2.11, select the rectangular figure for a 5-ft width (Figure 3.25). 

2. From 60 cfs on the Q scale, move vertically to intersect the slope line S = .0006, and from the 
depth lines read dn = 3.7 ft. 

3. Move horizontally from the same intersection and read the normal velocity, V = 3.2 ft/s, on the 
ordinate scale. 

4. The intersection lies below the critical curve, and the flow is therefore in the subcritical range. 
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Figure 3.25 Example Nomograph #1 
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Example Design Problem 2 

Given: A trapezoidal channel with 2:1 side slopes and a 4 ft bottom width, with n = 0.030, 0.2% slope (S 
= 0.002), discharging 50 cfs. 

 
Find: Depth, velocity, type flow. 
 
Procedure: 

1. Select the trapezoidal figure for b = 4 ft (see Figure 3.26). 

2. From 50 cfs on the Q scale, move vertically to intersect the slope line S = 0.002 and from the 
depth lines read dn = 2.2 ft. 

3. Move horizontally from the same intersection and read the normal velocity, V = 2.75 ft/s, on the 
ordinate scale.  The intersection lies below the critical curve, and the flow is therefore subcritical. 

 
Example Design Problem 3 

Given: A rectangular cement rubble masonry channel 5 ft wide, with n = 0.025, 0.5% slope 
(S = 0.005), discharging 80 cfs. 

 
Find: Depth velocity and type of flow 
 
Procedure: 

1. Select the rectangular figure for a 5 ft width (Figure 3.27). 

2. Multiply Q by n to obtain Qn:  80 x 0.025 = 2.0. 

3. From 2.0 on the Qn scale, move vertically to intersect the slope line, S = 0.005, and at the 
intersection read dn = 3.1 ft. 

4. Move horizontally from the intersection and read Vn = .13, then Vn/n = 0.13/0.025 = 5.2 ft/s. 

5. Critical depth and critical velocity are independent of the value of n so their values can be read at 
the intersection of the critical curve with a vertical line through the discharge.  For 80 cfs, on 
Figure 3.14, dc = 2.0 ft and Vc = 7.9 ft/s.  The normal velocity, 5.2 ft/s (from step 4), is less than 
the critical velocity, and the flow is therefore subcritical.  It will also be noted that the normal 
depth, 3.0 ft, is greater than the critical depth, 2.0 ft, which also indicates subcritical flow. 

6. To determine the critical slope for Q = 80 cfs and n = 0.025, start at the intersection of the critical 
curve and a vertical line through the discharge, Q = 80 cfs, finding dc (2.0 ft) at this point.  Follow 
along this dc line to its intersection with a vertical line through Qn = 2.0 (step 2), at this 
intersection read the slope value Sc = 0.015. 
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Figure 3.26 Example Nomograph #2 
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Figure 3.27 Example Nomograph #3 
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3.2.12 Grassed Channel Figures 
The Manning equation can be used to determine the capacity of a grass-lined channel, but the value of n 
varies with the type of grass, development of the grass cover, depth, and velocity of flow.  The variable 
value of n complicates the solution of the Manning equation.  The depth and velocity of flow must be 
estimated and the Manning equation solved using the n value that corresponds to the estimated depth 
and velocity.  The trial solution provides better estimates of the depth and velocity for a new value of n 
and the equation is again solved.  The procedure is repeated until a depth is found that carries the design 
discharge. 
 
To prevent excessive erosion, the velocity of flow in a grass-lined channel must be kept below some 
maximum value (referred to as permissible velocity).  The permissible velocity in a grass-lined channel 
depends upon the type of grass, condition of the grass cover, texture of the soil comprising the channel 
bed, channel slope, and to some extent the size and shape of the drainage channel.  To guard against 
overtopping, the channel capacity should be computed for taller grass than is expected to be maintained, 
while the velocity used to check the adequacy of the protection should be computed assuming a lower 
grass height than will likely be maintained. 
 
To aid in the design of grassed channels, the Federal Highway Administration has prepared numerous 
design figures.  Copies of these figures are in Section 3.2.11.  Following is a brief description of general 
design criteria, instructions on how to use the figures, and several example design problems.  For design 
conditions not covered by the figures, a trial-and-error solution of the Manning equation must be used. 
 

Description of Figures 

A set of figures in FHWA, NDS No. 3, 1973 and Atlanta Regional Commission, 2001 are designed for use 
in the direct solution of the Manning equation for various channel sections lined with grass.  The figures 
are similar in appearance and use to those for trapezoidal cross sections described earlier.  However, 
their construction is much more difficult because the roughness coefficient (n) changes as higher 
velocities and/or greater depths change the condition of the grass.  The effect of velocity and depth of 
flow on n is evaluated by the product of velocity and hydraulic radius V times R.  The variation of 
Manning's n with the retardance (Table 3.6) and the product V times R is shown in Figure 3.2.  As 
indicated in Table 3.6, retardance varies with the height of the grass and the condition of the stand.  Both 
of these factors depend upon the type of grass, planting conditions, and maintenance practices.  Table 
3.6 is used to determine retardance classification. 
 
The grassed channel figures each have two graphs, the upper graph for retardance Class D and the 
lower graph for retardance Class C.  The figures are plotted with discharge in cubic feet per second on 
the abscissa and slope in feet per foot on the ordinate.  Both scales are logarithmic.   
 
Superimposed on the logarithmic grid are lines for velocity in feet per second and lines for depth in feet.  
A dashed line shows the position of critical flow. 
 

Instructions for Grassed Channel Figures 

The grassed channel figures like those in Figure 3.12 provide a solution of the Manning equation for flow 
in open grassed channels of uniform slope and cross section.  The flow should not be affected by 
backwater and the channel should have length sufficient to establish uniform flow.  The figures are 
sufficiently accurate for design of drainage channels of fairly uniform cross section and slope, but are not 
appropriate for irregular natural channels. 
 
The design of grassed channels requires two operations:  (1) selecting a section that has the capacity to 
carry the design discharge on the available slope and (2) checking the velocity in the channel to ensure 
that the grass lining will not be eroded.  Because the retardance of the channel is largely beyond the 
control of the designer, it is good practice to compute the channel capacity using retardance Class C and 
the velocity using retardance Class D.  The calculated velocity should then be checked against the 
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permissible velocities listed in Tables 3.2 and 3.3.  The use of the figures is explained in the following 
steps: 

Step 1 Select the channel cross section to be used and find the appropriate figure. 

Step 2 Enter the lower graph (for retardance Class C) on the figure with the design discharge value on 
the abscissa and move vertically to the value of the slope on the ordinate scale.  As this 
intersection, read the normal velocity and normal depth and note the position of the critical 
curve.  If the intersection point is below the critical curve, the flow is subcritical; if it is above, the 
flow is supercritical. 

Step 3 To check the velocity developed against the permissible velocities (Tables 3.2 and 3.3), enter 
the upper graph on the same figure and repeat Step 2.  Then compare the computed velocity 
with the velocity permissible for the type of grass, channel slope, and erosion resistance of the 
soil.  If the computed velocity is less, the design is acceptable.  If not, a different channel 
section must be selected and the process repeated. 

 
Example Design Problem 1 

Given: A trapezoidal channel in easily eroded soil, lined with a grass mixture with 4:1 side slopes, and a 
4 ft bottom width on slope of 0.02 ft per foot (S=.02), discharging 20 cfs. 

 
Find: Depth, velocity, type of flow, and adequacy of grass to prevent erosion 
 
Procedure: 

1. Select figure for 4:1 side slopes (see Figure 3.28). 

2. Enter the lower graph with Q = 20 cfs, and move vertically to the line for S=0.02.  At this 
intersection read dn = 1.0 ft, and normal velocity Vn 2.6 ft/s. 

3. The velocity for checking the adequacy of the grass cover should be obtained from the upper 
graph, for retardance Class D.  Using the same procedure as in step 2, the velocity is found to be 
3.0 ft/s.  This is about three-quarters of that listed as permissible, 4.0 ft/s in Table 3.3. 

 
Example Design Problem 2 

Given: The channel and discharge of Example 1. 
 
Find:  The maximum grade on which the 20 cfs could safely be carried 
 
Procedure: 

With an increase in slope (but still less than 5%), the allowable velocity is estimated to be 4 ft/s (see 
Table 3.3).  On the upper graph of Figure 3.29 for short grass, the intersection of the 20 cfs line and 
the 4 ft/s line indicates a slope of 3.7% and a depth of 0.73 ft. 
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Figure 3.28 Example Nomograph #4  
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Figure 3.29 Example Nomograph #5 
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3.3 Culvert Design  
3.3.1 Overview 

A culvert is a short, closed (covered) conduit that conveys stormwater runoff under an embankment or 
away from the street right-of-way.  The primary purpose of a culvert is to convey surface water, but 
properly designed it may also be used to restrict flow and reduce downstream peak flows.   
 
The hydraulic and structural designs of a culvert must be such that minimal risks to traffic, property 
damage, and failure from floods prove the results of good engineering practice and economics.  For 
economy and hydraulic efficiency, engineers should design culverts to operate with the inlet submerged 
during flood flows, if conditions permit.  Design considerations include site and roadway data, design 
parameters (including shape, material, and orientation), hydrology (flood magnitude versus frequency 
relation), and channel analysis (stage versus discharge relation). 
 

3.3.2 Symbols and Definitions 

To provide consistency within this section as well as throughout this Manual the symbols listed in Table 
3.10 will be used.  These symbols were selected because of their wide use. 
 

Table 3.10 Symbols and Definitions 

Symbol Definition Units 

A Area of cross section of flow ft2 

B Barrel width ft 

Cd Overtopping discharge coefficient - 

D Culvert diameter or barrel depth in or ft 

d Depth of flow ft 

dc Critical depth of flow ft 

du Uniform depth of flow ft 

g Acceleration of gravity ft/s 

Hf Depth of pool or head, above the face section of invert ft 

ho Height of hydraulic grade line above outlet invert ft 

HW 
Headwater depth above invert of culvert (depth from inlet 
invert to upstream total energy grade line) 

ft 

Ke Inlet loss coefficient - 

L Length of culvert ft 

N Number of barrels - 

Q Rate of discharge cfs 

S Slope of culvert ft/f 

TW Tailwater depth above invert of culvert ft 

V Mean velocity of flow ft/s 

Vc Critical velocity ft/s 
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3.3.3 Design Considerations 
The design of a culvert should take into account many different engineering and technical aspects at the 
culvert site and adjacent areas.  The following list of design recommendations should be considered for 
all culvert designs as applicable. Refer to Section 3.6.3 of the Criteria Manual or the local review authority 
for design criteria details. 
 

 Frequency Flood 

 Velocity Limitations 

 Buoyancy Protection 

o Headwalls, endwalls, slope paving, or other means of anchoring to provide buoyancy 
protection should be considered for all flexible culverts. 

 Length and Slope 

 Debris Control 

o In designing debris control structures, it is recommended that the Hydraulic Engineering 
Circular No. 9 entitled Debris Control Structures be consulted.  

 Headwater Limitations 

 Tailwater Considerations 

 Storage 

 Culvert Inlets 

o Hydraulic efficiency and cost can be significantly affected by inlet conditions.  The inlet 
coefficient Ke, is a measure of the hydraulic efficiency of the inlet, with lower values 
indicating greater efficiency.  Recommended inlet coefficients are given in Table 3.11. 

 Inlets with Headwalls 

o Headwalls may be used for a variety of reasons, including increasing the efficiency of the 
inlet, providing embankment stability, providing embankment protection against erosion, 
providing protection from buoyancy, and shortening the length of the required structure.  
Headwalls are required for all metal culverts and where buoyancy protection is 
necessary.  If high headwater depths are to be encountered, or the approach velocity in 
the channel will cause scour, a short channel apron should be provided at the toe of the 
headwall. 
 

o This apron should extend at least one pipe diameter upstream from the entrance, and the 
top of the apron should not protrude above the normal streambed elevation. 

 Wingwalls and Aprons 

o Wingwalls are used where the side slopes of the channel adjacent to the entrance are 
unstable or where the culvert is skewed to the normal channel flow. 

 Improved Inlets 

o Where inlet conditions control the amount of flow that can pass through the culvert, 
improved inlets can greatly increase the hydraulic performance of the culvert. 

 Material Selection 

o Reinforced concrete pipe (RCP), pre-cast and cast in place concrete boxes are 
recommended for use (1) under a roadway, (2) when pipe slopes are less than 1%, or (3) 
for all flowing streams.  RCP and fully coated corrugated metal pipe can be used in all 
other cases.  High-density polyethylene (HDPE) pipe may also be used as specified in 
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the municipal regulations.  Table 3.12 gives recommended Manning's n values for 
different materials. 

 Culvert Skews 

o Culvert skews shall not exceed 45 degrees as measured from a line perpendicular to the 
roadway centerline without approval. 

 Weep Holes 

o Weep holes are sometimes used to relieve uplift pressure on headwalls and concrete rip-
rap.  Filter materials should be used in conjunction with the weep holes in order to 
intercept the flow and prevent the formation of piping channels through the fill 
embankment.  The filter materials should be designed as an underdrain filter so as not to 
become clogged and so that piping cannot occur through the pervious material and the 
weep hole. 

 Outlet Protection 

o See Section 2.2 for information on the design of outlet protection. 

 Erosion and Sediment Control 

 Environmental Considerations 

o Where compatible with good hydraulic engineering, a site should be selected that will 
permit the culvert to be constructed to cause the least impact on the stream or wetlands.  
This selection must consider the entire site, including any necessary lead channels. 

 Safety Considerations 

o Roadside safety should be considered for culverts crossing under roadways.  Guardrails 
or safety end treatments may be needed to enhance safety at culvert crossings.  The 
AASHTO roadside design guide should be consulted for culvert designs under and 
adjacent to roadways. 
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Table 3.11 Inlet Coefficients 

Type of Structure and Design of Entrance Coefficient Ke 

Pipe, Concrete  

 

Projecting from fill, socket end (grove-end) 

Projecting from fill, square cut end 

Headwall or headwall and wingwalls 

 Socket end of pipe (groove-end) 

 Square-edge 

 Rounded [radius = 1/12(D)] 

 Mitered to conform to fill slope 

 *End-Section conforming to fill slope 

 Beveled edges, 33.7o or 45o bevels 

 Side- or slope-tapered inlet 

0.2 

0.5 

 

0.2 

0.5 

0.2 

0.7 

0.5 

0.2 

0.2 

Pipe, or Pipe-Arch, Corrugated Metal1  

 

Projecting form fill (no headwall) 

Headwall or headwall and wingwalls square-edge 

Mitered to fill slope, paved or unpaved slope 

*End Section conforming to fill slope 

Beveled edges, 33.7o or 45o bevels 

Slide- or slope-tapered inlet 

0.9 

0.5 

0.7 

0.5 

0.2 

0.2 

Box, Reinforced Concrete  

 

Headwall parallel to embankment (no wingwalls) 

 Square-edged on 3 edges 

 Rounded on 3 edges to radius of [1/12(D)] or [1/12(B)] or beveled edges on 3 sides 

Wingwalls at 30o to 75o to barrel 

 Square-edged at crown 

 Crown edge rounded to radius of [1/12(D)] or beveled top edge 

Wingwalls at 10o or 25o to barrel 

 Square-edged at crown 

Wingwalls parallel (extension of sides) 

 Square-edged at crown 

Side- or slope-tapered inlet 

 

0.5 

0.2 

 

0.4 

0.2 

 

0.5 

 

0.7 

0.2 

1 Although laboratory tests have not been completed on Ke values for High-Density Polyethylene (HDPE) pipes, the Ke values for 

corrugated metal pipes are recommended for HDPE pipes. 
 

* Note: “End Section conforming to fill slope”, made of either metal or concrete, are the sections commonly available from 

manufacturers.  From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control.  Some 
end sections incorporating a closed taper in their design have a superior hydraulic performance.  These latter sections can be 
designed using the information given for the beveled inlet.  

 
Source:  HDS No. 5, 2001 
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Table 3.12 Manning's n Values 

Type of Conduit Wall & Joint Description Manning's n 

Concrete Pipe Good joints, smooth walls 0.012 

 Good joints, rough walls 0.016 

 Poor joints, rough walls 0.017 

Concrete Box Good joints, smooth finished walls 0.012 

 Poor joints, rough, unfinished walls 0.018 

Corrugated Metal 
Pipes and Boxes 
Annular Corrugations 

2 2/3- by ½-inch corrugations 0.024 

6- by 1-inch corrugations 0.025 

5- by 1-inch corrugations 0.026 

3- by 1-inch corrugations 0.028 

6-by 2-inch structural plate 0.035 

9-by 2-1/2 inch structural plate 0.035 

Corrugated Metal 
Pipes, Helical 
Corrugations, Full 
Circular Flow 

2 2/3-by ½-inch corrugated 24-inch plate width 0.012 

Spiral Rib Metal Pipe 3/4 by 3/4 in recesses at 12 inch spacing, good joints 0.013 

High Density 
Polyethylene (HDPE) 

Corrugated Smooth Liner 0.015 

Corrugated 0.020 

Polyvinyl Chloride 
(PVC) 

 0.011 

Source:  HDS No. 5, 2001 

 

Note:  For further information concerning Manning n values for selected conduits consult Hydraulic Design of Highway 
Culverts, Federal Highway Administration, 2001, HDS No. 5, pages 201 - 208. 
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3.3.4 Design Procedures 
Types of Flow Control 

There are two types of flow conditions for culverts that are based upon the location of the control section 
and the critical flow depth: 
 
Inlet Control – Inlet control occurs when the culvert barrel is capable of conveying more flow than the inlet 
will accept.  This typically happens when a culvert is operating on a steep slope.  The control section of a 
culvert is located just inside the entrance.  Critical depth occurs at or near this location, and the flow 
regime immediately downstream is supercritical. 
 
Outlet Control – Outlet control flow occurs when the culvert barrel is not capable of conveying as much 
flow as the inlet opening will accept.  The control section for outlet control flow in a culvert is located at 
the barrel exit or further downstream.  Either subcritical or pressure flow exists in the culvert barrel under 
these conditions. 
 

 

Figure 3.30 Culvert Flow Conditions 
(Adapted from:  HDS-5, 2001) 

 
Proper culvert design and analysis requires checking for both inlet and outlet control to determine which 
will govern particular culvert designs.  For more information on inlet and outlet control, see the FHWA 
Hydraulic Design of Highway Culverts, HDS-5, 2001. 
 

Procedures 

The culvert design process includes the following basic stages: 
 

1. Define the location, orientation, shape, and material for the culvert to be designed.  In many 
instances, consider more than single shape and material. 

2. With consideration of the site data, establish allowable outlet velocity and maximum allowable 
depth of barrel. 

3. Based on upon subject discharges, associated tailwater levels, and allowable headwater level, 
define an overall culvert configuration to be analyzed (culvert hydraulic length, entrance 
conditions, and conduit shape and material). 

4. Determine the flow type (supercritical or subcritical) to establish the proper path for determination 
of headwater and outlet velocity. 

5. Optimize the culvert configuration. 
6. Treat any excessive outlet velocity separately from headwater. 
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There are three procedures for designing culverts:  inlet control design equations, manual use of inlet and 
outlet control nomographs, and the use computer programs such as HY8.  It is recommended that the 
HY8 computer model or equivalent be used for culvert design.  The computer software package 
HYDRAIN, which includes HY8, uses the theoretical basis from the nomographs to size culverts.  In 
addition, this software can evaluate improved inlets, route hydrographs, consider road overtopping, and 
evaluate outlet streambed scour.  By using water surface profiles, this procedure is more accurate in 
predicting backwater effects and outlet scour. 
 

Inlet Control Design Equations 

This section contains explanations of the equations and methods used to develop the design charts in 
HDS No. 5, where those equations and methods are not fully described in the main text.  The following 
topics are discussed:  the design equations for the unsubmerged and submerged inlet control 
nomographs, the dimensionless design curves for culvert shapes and sizes without nomographs, and the 
dimensionless critical depth charts for long span culverts and corrugated metal box culverts. 
 
Inlet Control Nomograph Equations:  The design equations used to develop the inlet control 
nomographs are based on the research conducted by the National Bureau of Standards (NBS) under the 
sponsorship of the Bureau of Public Roads (now the Federal Highway Administration).  Seven progress 
reports were produced as a result of this research.  Of these, the first and fourth through seventh reports 
dealt with the hydraulics of pipe and box culvert entrances, with and without tapered inlets (4, 7, to 10).  
These reports were one source of the equation coefficients and exponents, along with other references 
and unpublished FHWA notes on the development of the nomographs (56 and 57). 
 
The two basic conditions on inlet control depend upon whether the inlet end of the culvert is or is not 
submerged by the upstream headwater.  If the inlet is not submerged, the inlet performs as a weir.  If the 
inlet is submerged, the inlet performs as an orifice.  Equations are available for each of the above 
conditions. 
 
Between the unsubmerged and the submerged conditions, there is a transition zone for which the NBS 
research provided only limited information.  The transition zone is defined empirically by drawing a curve 
between and tangent to the curves defined by the unsubmerged and submerged equations.  In most 
cases, the transition zone is short and the curve is easily constructed. 
 
Table 3.13 contains the unsubmerged and submerged inlet control design equations.  Note that there are 
two forms of the unsubmerged equation.  Form (1) is based on the specific head at critical depth, 
adjusted with tow correction factors.  Form (2) is an exponential equation similar to a weir equation.  Form 
(1) is preferable from a theoretical standpoint, but Form (2) is easier to apply and is the only documented 
form of equation for some of the inlet control nomographs. 
 
The constants and the corresponding equation form are given in Table 3.14.  Table 3.14 is arranged in 
the same order as the design nomographs shown later in this section, and provides the unsubmerged 
and submerged equation coefficients for each shape, material, and edge configuration.  For the 
unsubmerged equations, the form of the equation is also noted. 
 
The equations may be used to develop design curves for any conduit shape or size.  Careful examination 
of the equation constants for a given form of equation reveals that there is very little difference between 
the constants for a given inlet configuration.  Therefore, given the necessary conduit geometry for a new 
shape from the manufacturer, a similar shape is chosen from Table 3.14, and the constants are used to 
develop new design curves.  The curves may be quasi-dimensionless, in terms of Q/AD0.5 and HW i/D, or 
dimensional, in terms of Q and HW i for a particular conduit size.  To make the curves truly dimensionless, 
Q/AD0.5 must be divided by g0.5, but this results in small decimal numbers.  Note that coefficients for 
rectangular (Box) shapes should not be used for nonrectangular (circular, arch, pipe-arch, etc.) shapes 
and vice-versa.  A constant slope value of 2 percent (0.02) is usually selected for the development of 
design curves.  This is because the slope effect is small and the resultant headwater is conservatively 
high for sites with slopes exceeding 2 percent (except for mitered inlets). 
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Table 3.14 Constants for Inlet Control Design Equations 

Chart 
No. 

Shape and 
Material 

Nomograph 
Scale 

Inlet Edge Description 
Equation 

Form 

Unsubmerged Submerged 
References* 

K M c Y 

          

1 Circular 
Concrete 

1 
2 
3 

Square edge w/ headwall 
Groove end w/ headwall 
Groove end projecting 

1 .0098 
.0018 
.0045 

2.0 
2.0 
2.0 

.0398 

.0292 

.0317 

.67 

.74 

.69 

56/57 

2 Circular 
CMP 

1 
2 
3 

Headwall 
Mitered to slope 
Projecting 

1 .0078 
.0210 
.0340 

2.0 
1.33 
1.50 

.0379 

.0463 

.0553 

.69 

.75 

.54 

56/57 

3 Circular A 
B 

Beveled ring, 45o bevels 
Beveled ring, 33.7o bevels 

1 .0018 
.0018 

2.50 
2.50 

.0300 

.0243 
.74 
.83 

57 

8 Rectangular 
Box 

1 
2 
3 

30o to 75o wingwall flares 
90o and 15o wingwall flares 
0o wingwall flares 

1 .026 
.061 
.061 

1.0 
.75 
.75 

.0347 

.0400 

.0423 

.81 

.80 

.82 

56 
56 
8 

9 Rectangular 
Box 

1 
2 

45o wingwall flare d = .043D 
18o to 33.7o wingwall flare d = 
.083D 

2 .510 
.486 

.667 

.667 
.0309 
.0249 

.80 

.83 
8 

10 Rectangular  
Box 

1 
2 
3 

90o headwall w/ 3/4” chamfers 
90o headwall w/ 45o bevels 
90o headwall w/ 33.7o bevels 

2 .515 
.495 
.486 

.667 

.667 

.667 

.0375 

.0314 

.0252 

.79 

.82 
.865 

8 

Table 3.13 Inlet Control Design Equations 

Unsubmerged*  

 Form (1) S
AD

QK
K

D

H

D

HW
M

uci 5.0
5.0









 ***   (3.30) 

 Form (2) 

M

ui

AD

QK
K

D

HW










5.0
     (3.31) 

Submerged**  

 

SY
AD

QK
c

D

HW ui 5.0

2

5.0









 ***   (3.32) 

Definitions  

 HW i Headwater depth above inlet control section invert, m (ft) 

 D Interior height of culvert barrel, m (ft) 

 Hc Specific head at critical depth (dc + Vc
2/2g), m2 (ft2) 

 Q Discharge, m3/s (ft3/s)  

 A Full cross sectional area of culvert barrel, m2 (ft2) 

 S Culvert barrel slope, m/m (ft/ft) 

 K, M, c, Y Constants from Table 3.14 

 Ku 1.811 Sl (1.0 English) 

  * Equations 3.30 and 3.31 (unsubmerged) apply to about Q/AD0.5 = 1.93 (3.5 English) 

 ** Equation 3.32 (submerged) above applies to about Q/AD0.5 = 2.21 (4.0 English) 

*** For mitered inlets use +0.7 S instead of -0.5 S as the slope correction factor. 
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Table 3.14 Constants for Inlet Control Design Equations 

Chart 
No. 

Shape and 
Material 

Nomograph 
Scale 

Inlet Edge Description 
Equation 

Form 

Unsubmerged Submerged 
References* 

K M c Y 

          

11 Rectangular 
Box 

1 
 

2 
 

3 
 

4 

3/4” chamfers; 45o skewed 
headwall 
3/4” chamfers; 30o skewed 
headwall 
3/4” chamfers; 15o skewed 
headwall 
45o bevels; 10o-45o skewed 
headwall 

2 .545 
.533 
.522 
.498 

.667 

.667 

.667 

.667 

.0451 

.0425 

.0402 

.0327 

.73 
.705 

.68 

.75 

8 

12 Rectangular 
Box 3/4” 
chamfers 

1 
2 
 

3 

45o non-offset wingwall flares 
18.4o non-offset wingwall flares 
18.4o non-offset wingwall flares 
30o skewed barrel 

2 .497 
.493 
.495 

.667 

.667 

.667 

.0339 

.0361 

.0386 

.803 

.806 
.71 

8 

13 Rectangular 
Box Top 
Bevels 

1 
2 
3 

45o wingwall flares - offset 
33.7o wingwall flares - offset 
18.4o wingwall flares - offset 

2 .497 
.495 
.493 

.667 

.667 

.667 

.0302 

.0252 

.0227 

.835 

.881 

.887 

8 

16-19 CM Boxes 2 
3 
5 

90o headwall 
Thick wall projecting 
Thin wall projecting 

1 .0083 
.0145 
.0340 

2.0 
1.75 

1.5 

.0379 

.0419 

.0496 

.69 

.64 

.57 

57 

29 Horizontal 
Ellipse 
Concrete 

1 
2 
3 

Square edge w/ headwall 
Groove end w/ headwall 
Groove end projecting 

1 .0100 
.0018 
.0045 

2.0 
2.5 
2.0 

.0398 

.0292 

.0317 

.67 

.74 

.69 

57 

30 Vertical 
Ellipse 
Concrete 

1 
2 
3 

Square edge w/ headwall 
Groove end w/ headwall 
Groove end projecting 

1 .0100 
.0018 
.0095 

2.0 
2.5 
2.0 

.0398 

.0292 

.0317 

.67 

.74 

.69 

57 

34 Pipe Arch 
18” Corner 
Radius CM 

1 
2 
3 

90o headwall 
Mitered to slope 
Projecting 

1 .0083 
.0300 
.0340 

2.0 
1.0 
1.5 

.0379 

.0463 

.0496 

.69 

.75 

.57 

57 

35 Pipe Arch 
18” Corner 
Radius CM 

1 
2 
3 

Projecting 
No Bevels 
33.7o Bevels 

1 .0300 
.0088 
.0030 

1.5 
2.0 
2.0 

.0496 

.0368 

.0269 

.57 

.68 

.77 

56 

36 Pipe Arch 
31” Corner 
Radius CM 

1 
2 
3 

Projecting 
No Bevels 
33.7o Bevels 

1 .0300 
.0088 
.0030 

1.5 
2.0 
2.0 

.0496 

.0368 

.0269 

.57 

.68 

.77 

56 

41-43 Arch CM 1 
2 
3 

90o headwall 
Mitered to slope 
Thin wall projecting 

1 .0083 
.0300 
.0340 

2.0 
1.0 
1.5 

.0379 

.0463 

.0496 

.69 

.75 

.57 

57 

55 Circular 1 
2 

Smooth tapered inlet throat 
Rough tapered inlet throat 

2 .534 
.519 

.555 
.64 

.0196 

.0210 
.90 
.90 

3 

56 Elliptical 
Inlet Face 

1 
2 
3 

Tapered inlet-beveled edges 
Tapered inlet-square edges 
Tapered inlet-thin edge 
projecting 

2 .536 
.5035 

.547 

.622 

.719 
.80 

.0368 

.0478 

.0598 

.83 

.80 

.75 

3 

57 Rectangular 1 Tapered inlet throat 2 .475 .667 .0179 .97 3 

58 Rectangular 
Concrete 

1 
 

2 

Side tapered-less favorable 
edges 
Side tapered-more favorable 
edges 

2 .56 
.56 

.667 

.667 
.0446 
.0378 

.85 

.87 
3 
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Table 3.14 Constants for Inlet Control Design Equations 

Chart 
No. 

Shape and 
Material 

Nomograph 
Scale 

Inlet Edge Description 
Equation 

Form 

Unsubmerged Submerged 
References* 

K M c Y 

          

59 Rectangular 
Concrete 

1 
 

2 

Slope tapered-less favorable 
edges 
Slope tapered-more favorable 
edges 

2 .50 
.50 

.667 

.667 
.0446 
.0378 

.65 

.71 
3 

* These references are cited in FHWA, 2001, HYD-5.  They can be accessed at the Federal Highway Administration web site: 
www.fhwa.dot.gov/bridge/hydpub.htm. 

 

 

http://www.fhwa.dot.gov/bridge/hydpub.htm
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Nomographs 

The use of culvert design nomographs requires a trial and error solution.  Nomograph solutions provide 
reliable designs for many applications.  It should be remembered that velocity, hydrograph routing, 
roadway overtopping, and outlet scour require additional, separate computations beyond what can be 
obtained from the nomographs.  Figures 3.31 (a) and (b) show examples of an inlet control and outlet 
control nomographs for the design of concrete pipe culverts.  For other culvert designs, refer to the 
complete set of nomographs in FHWA Hydraulic Design of Highway Culverts, HDS-5, 2001, Second 
Edition. 
 
This section presents design guidance for culverts originally published in HEC-12, Drainage of Highway 
Pavements and AASHTO's Model Drainage Manual. 

 

Figure 3.31a Headwater Depth for Concrete Pipe Culvert with Inlet Control 
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Figure 3.31b Head for Concrete Pipe Culverts Flowing Full 
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Design Procedure 

The following design procedure requires the use of inlet and outlet nomographs. 

Step 1 List design data: 

Q = discharge (cfs) 

L = culvert length (ft) 

S = culvert slope (ft/ft) 

TW = tailwater depth (ft) 

V = velocity for trial diameter (ft/s) 

Ke = inlet loss coefficient 

HW = allowable headwater depth for the design storm (ft) 

Step 2 Determine trial culvert size by assuming a trial velocity of 3 to 5 ft/s and computing the culvert 
area, A = Q/V.  Determine the culvert diameter (inches). 

Step 3 Find the actual HW for the trial size culvert for both inlet and outlet control. 

 For inlet control, enter inlet control nomograph with D and Q and find HW/D for the proper 
entrance type. 

 Compute HW and, if too large or too small, try another culvert size before computing HW 
for outlet control. 

 For outlet control enter the outlet control nomograph with the culvert length, entrance loss 
coefficient, and trial culvert diameter. 

 To compute HW, connect the length scale for the type of entrance condition and culvert 
diameter scale with a straight line, pivot on the turning line, and draw a straight line from 
the design discharge through the turning point to the head loss scale H.  Compute the 
headwater elevation HW from the equation: 

 HW = H + ho - LS (3.33) 

 where: 

  ho = ½ (critical depth + D), or tailwater depth, whichever is greater 

  L = culvert length 

  S = culvert slope 

Step 4 Compare the computed headwaters and use the higher HW nomograph to determine if the 
culvert is under inlet or outlet control. 

 If inlet control governs, then the design is complete and no further analysis is required. 

 If outlet control governs and the HW is unacceptable, select a larger trial size and find 
another HW with the outlet control nomographs.  Since the smaller size of culvert had been 
selected for allowable HW by the inlet control nomographs, the inlet control for the larger 
pipe need not be checked. 

Step 5 Calculate exit velocity and if erosion problems might be expected, refer to Section 4.0 for 
appropriate energy dissipation designs.  Energy dissipation designs may affect the outlet 
hydraulics of the culvert. 
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Performance Curves - Roadway Overtopping 

A performance curve for any culvert can be obtained from the nomographs by repeating the steps 
outlined above for a range of discharges that are of interest for that particular culvert design.  A graph is 
then plotted of headwater versus discharge with sufficient points so that a curve can be drawn through 
the range of interest.  These curves are applicable through a range of headwater, velocities, and scour 
depths versus discharges for a length and type of culvert.  Usually charts with length intervals of 25 to 50 
feet are satisfactory for design purposes.  Such computations are made much easier by the use of 
computer programs. 
 
To complete the culvert design, roadway overtopping should be analyzed.  A performance curve showing 
the culvert flow as well as the flow across the roadway is a useful analysis tool.  Rather than using a trial 
and error procedure to determine the flow division between the overtopping flow and the culvert flow, an 
overall performance curve can be developed. 
 
The overall performance curve can be determined as follows: 

Step 1 Select a range of flow rates and determine the corresponding headwater elevations for the 
culvert flow alone.  The flow rates should fall above and below the design discharge and cover 
the entire flow range of interest.  Both inlet and outlet control headwaters should be calculated.  

Step 2 Combine the inlet and outlet control performance curves to define a single performance curve 
for the culvert. 

Step 3 When the culvert headwater elevations exceed the roadway crest elevation, overtopping will 
begin.  Calculate the equivalent upstream water surface depth above the roadway (crest of 
weir) for each selected flow rate.  Use these water surface depths and Equation 3.34 to 
calculate flow rates across the roadway. 

  Q = CdL(HW)1.5 (3.34) 

  where: 

   Q = overtopping flow rate (ft3/s) 

   Cd = overtopping discharge coefficient 

   L = length of roadway (ft) 

   HW = upstream depth, measured from the roadway crest to the water surface 
upstream of the weir drawdown (ft) 

 Note: See Figure 3.32 on the next page for guidance in determining a value for Cd.  For more 
information on calculating overtopping flow rates see pages 38 - 44 in HDS No. 5, 2001. 

Step 4 Add the culvert flow and the roadway overtopping flow at the corresponding headwater 
elevations to obtain the overall culvert performance curve. 

 

Storage Routing 

A significant storage capacity behind a highway embankment attenuates a flood hydrograph.  Because of 
the reduction of the peak discharge associated with this attenuation, the required capacity of the culvert, 
and its size, may be reduced considerably.  If significant storage is anticipated behind a culvert, the 
design should be checked by routing the design hydrographs through the culvert to determine the 
discharge and stage behind the culvert.  See Section 3.3.7 for more information on routing.  Additional 
routing procedures are outlined in Hydraulic Design of Highway Culverts, Section V - Storage Routing, 
HDS No. 5, 2001, Federal Highway Administration, pages 123 - 142. 

 
Note:  Storage should be taken into consideration only if the storage area will remain available for the life 
of the culvert as a result of purchase of ownership or right-of-way or an easement has been acquired. 
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Figure 3.32 Discharge Coefficients for Roadway Overtopping 
(Source:  HDS No. 5, 2001) 

 
 

3.3.5 Culvert Design Example 

The following example problem illustrates the procedures to be used in designing culverts using the 
nomographs. 
 

Example  

Size a culvert given the following example data, which were determined by physical limitations at the 
culvert site and hydraulic procedures described elsewhere in this handbook. 
 
Input Data 

Discharge for 2-yr flood = 35 cfs 

Discharge for 25-yr flood = 70 cfs 

Allowable Hw for 25-yr discharge = 5.25 ft 
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Length of culvert = 100 ft 

Natural channel invert elevations - inlet = 15.50 ft, outlet = 14.30 ft 

Culvert slope = 0.012 ft/ft 

Tailwater depth for 25-yr discharge = 3.5 ft 

Tailwater depth is the normal depth in downstream channel 

Entrance type = Groove end with headwall 

 

Computations 

1. Assume a culvert velocity of 5 ft/s.  Required flow area = 70 cfs/5 ft/s = 14 ft2 (for the 25-yr recurrence 
flood). 

2. The corresponding culvert diameter is about 48 in.  This can be calculated by using the formula for 
area of a circle:  Area = (3.14D2)/4 or D = (Area times 4/3.14)0.5.  Therefore:  D = ((14 sq ft x 4)/3.14) 

0.5 x 12 in/ft) = 50.7 in 

3. A grooved end concrete culvert with a headwall is selected for the design.  Using the inlet control 
nomograph (Figure 3.31a), with a pipe diameter of 48 inches and a discharge of 70 cfs; read a HW/D 
value of 0.93. 

4. The depth of headwater (HW) is (0.93) x (4) = 3.72 ft, which is less than the allowable headwater of 
5.25 ft.  Since 3.72 ft is considerably less than 5.25 try a small culvert.  

5. Using the same procedures outlined in steps 4 and 5 the following results were obtained. 

 42-inch culvert – HW = 4.13 ft 

 36-inch culvert – HW = 5.04 ft 

 Select a 36-inch culvert to check for outlet control.  

6. The culvert is checked for outlet control by using Figure 3.31b. 

 With an entrance loss coefficient Ke of 0.20, a culvert length of 100 ft, and a pipe diameter of 36 in., 
an H value of 2.8 ft is determined.  The headwater for outlet control is computed by the equation: HW 
= H + ho - LS 

 Compute ho  

  ho = Tw or ½ (critical depth in culvert + D), whichever is greater. 

  ho = 3.5 ft or ho = ½ (2.7 + 3.0) = 2.85 ft 

 Note: critical depth is obtained from Figure 1.19(b). 

 Therefore: ho = 3.5 ft  

 The headwater depth for outlet control is: 

 HW = H + ho - LS = 2.8 + 3.5 - (100) x (0.012) = 5.10 ft 

7. Since HW for outlet control (5.10 ft) is greater than the HW for inlet control (5.04 ft), outlet control 
governs the culvert design.  Thus, the maximum headwater expected for a 25-year recurrence flood 
is 5.10 ft, which is less than the allowable headwater of 5.25 ft. 

8. Estimate outlet exit velocity.  Since this culvert is an outlet control and discharges into an open 
channel downstream with tailwater above culvert, the culvert will be flowing full at the flow depth in 
the channel.  Using the design peak discharge of 70 cfs and the area of a 36-inch or 3.0-foot diameter 
culvert the exit velocity will be: 

 Q = VA  

 Therefore: V = 70 / (3.14(3.0)2)/4 = 9.9 ft/s 
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 With this high velocity, consideration should be given to provide an energy dissipator at the culvert 
outlet.  See Section 4.0.  

9. Check for minimum velocity using the 2-year flow of 35 cfs. 

 Therefore: V = 35 / (3.14(3.0)2/4 = 5.0 ft/s > minimum of 2.5 - OK 

10. The flood mitigation storm flow should be routed through the culvert to determine if any flooding 
problems will be associated with this flood. 

 
Figure 3.33 provides a convenient form to organize culvert design calculations. 
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Figure 3.33 Culvert Design Calculation Form 
(Source:  HDS No. 5, 2001) 
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3.3.6 Design Procedures for Beveled-Edged Inlets 
Introduction 

Improved inlets include inlet geometry refinements beyond those normally used in conventional culvert 
design practice.  Several degrees of improvements are possible, including bevel-edged, side-tapered, 
and slope-tapered inlets.  Those designers interested in using side- and slope-tapered inlets should 
consult the detailed design criteria and example designs outlined in the U. S. Department of 
Transportation publication Hydraulic Design Series No. 5 entitled, Hydraulic Design of Highway Culverts. 
 

Design Figures 

Four inlet control figures for culverts with beveled edges are found in Appendix D of HDS No. 5. 
 

Chart Page Use for 

3 D-3A & B circular pipe culverts with beveled rings 

10 D-10A & B 90o headwalls (same for 90 o wingwalls) 

11 D-11A & B skewed headwalls 

112 D-12A & B wingwalls with flare angles of 18 to 45 degrees 

 
The following symbols are used in these figures: 

B – Width of culvert barrel or diameter of pipe culvert 

D – Height of box culvert or diameter of pipe culvert 

Hf – Depth of pool or head, above the face section of invert 

N – Number of barrels 

Q – Design discharge 
 

Design Procedure 

The figures for bevel-edged inlets are used for design in the same manner as the conventional inlet 
design nomographs discussed earlier.  Note that Charts 10, 11, and 12 found in Appendix D of HDS No. 
5 apply only to bevels having either a 33o angle (1.5:1) or a 45o angle (1:1). 
 
For box culverts the dimensions of the bevels to be used are based on the culvert dimensions.  The top 
bevel dimension is determined by multiplying the height of the culvert by a factor.  The side bevel 
dimensions are determined by multiplying the width of the culvert by a factor.  For a 1:1 bevel, the factor 
is 0.5 inch/ft.  For a 1.5:1 bevel the factor is 1 inch/ft.  For example, the minimum bevel dimensions for an 
8 ft x 6 ft box culvert with 1:1 bevels would be: 

Top Bevel = d = 6 ft x 0.5 inch/ft = 3 inches 

Side Bevel = b = 8 ft x 0.5 inch/ft = 4 inches 

For a 1.5:1 bevel computations would result in d = 6 and b = 8 inches.  
 

Design Figure Limits 

The improved inlet design figures are based on research results from culvert models with barrel width, B, 
to depth, D, ratios of from 0.5:1 to 2:1.  For box culverts with more than one barrel, the figures are used in 
the same manner as for a single barrel, except that the bevels must be sized on the basis of the total 
clear opening rather than on individual barrel size. 
 

For example, in a double 8 ft by 8 ft box culvert: 
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Top Bevel is proportioned based on the height of 8 feet, which results in a bevel of 4 in. for the 1:1 bevel 
and 8 in. for the 1.5:1 bevel. 

Side Bevel is proportioned based on the clear width of 16 feet, which results in a bevel of 8 in. for the 1:1 
bevel and 16 in. for the 1.5:1 bevel.  
 

Multi-barrel Installations 

For multi-barrel installations exceeding a 3:1 width to depth ratio, the side bevels become excessively 
large when proportioned on the basis of the total clear width.  For these structures, it is recommended 
that the side bevel be sized in proportion to the total clear width, B, or three times the height, whichever is 
smaller. 

 
The top bevel dimension should always be based on the culvert height. 

 
The shape of the upstream edge of the intermediate walls of multi-barrel installations is not as important 
to the hydraulic performance of a culvert as the edge condition of the top and sides.  Therefore, the edges 
of these walls may be square, rounded with a radius of one-half their thickness, chamfered, or beveled.  
The intermediate walls may also project from the face and slope downward to the channel bottom to help 
direct debris through the culvert. 

 
Multi-barrel pipe culverts should be designed as a series of single barrel installations since each pipe 
requires a separate bevel. 
 

Skewed Inlets 

It is recommended that Chart 11 found in Appendix D of HDS No. 5 for skewed inlets not be used for 
multiple barrel installations, as the intermediate wall could cause an extreme contraction in the 
downstream barrels.  This would result in underdesign due to a greatly reduced capacity.  Skewed inlets 
(at an angle with the centerline of the stream) should be avoided whenever possible and should not be 
used with side- or slope-tapered inlets.  It is important to align culverts with streams in order to avoid 
erosion problems associated with changing the direction of the natural stream flow. 
 

3.3.7 Flood Routing and Culvert Design 

Introduction 

Flood routing through a culvert is a practice that evaluates the effect of temporary upstream ponding 
caused by the culvert's backwater.  By not considering flood routing it is possible that the findings from 
culvert analyses will be conservative.  If the selected allowable headwater is accepted without flood 
routing, then costly over-design of both the culvert and outlet protection may result, depending on the 
amount of temporary storage involved.  However, if storage is used in the design of culverts, 
consideration should be given to: 

 The total area of flooding, 

 The average time that bankfull stage is exceeded for the design flood up to 48 hours in rural areas or 
6 hours in urban areas, and 

 Ensuring that the storage area will remain available for the life of the culvert through the purchase of 
right-of-way or easement. 

 

Design Procedure 

The design procedure for flood routing through a culvert is the same as for reservoir routing.  The site 
data and roadway geometry are obtained and the hydrology analysis completed to include estimating a 
hydrograph.  Once this essential information is available, the culvert can be designed.  Flood routing 
through a culvert can be time consuming.  It is recommended that a computer program be used to 
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perform routing calculations; however, an engineer should be familiar with the culvert flood routing design 
process. 

 
A multiple trial and error procedure is required for culvert flood routing.  In general: 

Step 1 A trial culvert(s) is selected 

Step 2 A trial discharge for a particular hydrograph time increment (selected time increment to 
estimate discharge from the design hydrograph) is selected 

Step 3 Flood routing computations are made with successive trial discharges until the flood routing 
equation is satisfied 

Step 4 The hydraulic findings are compared to the selected site criteria  

Step 5 If the selected site criteria are satisfied, then a trial discharge for the next time increment is 
selected and this procedure is repeated; if not, a new trial culvert is selected and the entire 
procedure is repeated. 

 

Comprehensive Design Guidance 

Comprehensive design discussions and guidance may be found in the Federal Highway Administration, 
National Design Series No. 5, document entitled Hydraulic Design of Highway Culverts, Second Edition, 
published in 2001.  This document is available from the National Technical Information Service as Item 
Number PB2003102411*DL.  (http://www.ntis.gov/search.htm) Search for this document using the Item 
Number. 

http://www.ntis.gov/search.htm
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3.4 Bridge Design 

3.4.1 Overview 

Bridges enable streams to maintain flow conveyance and to sustain aquatic life.  They are important and 
expensive highway hydraulic structures vulnerable to failure from flood related causes.  In order to 
minimize the risk of failure, the hydraulic requirements of a stream crossing must be recognized and 
considered during the development, construction, and maintenance phases. 
 
This section addresses structures designed hydraulically as bridges, regardless of length.  For economy 
and hydraulic efficiency, engineers should design culverts to operate with the inlet submerged during 
flood flows, if conditions permit.  Bridges, on the other hand, are not covered with embankment or 
designed to take advantage of submergence to increase hydraulic capacity, even though some are 
designed to be inundated under flood conditions.  This discussion of bridge hydraulics considers the total 
crossing, including approach embankments and structures on the floodplains. 
 
The following subsections present considerations related to the hydraulics of bridges.  It is generally 
excerpted from Chapter 9 of the Texas Department of Transportation (TxDOT) Hydraulics Design Manual 
dated March 2004. 
 

Bridge Hydraulics Considerations 

When beginning analysis for a cross-drainage facility, the flood frequency and stage-discharge curves 
should first be established, as well as the type of cross-drain facility.  The choice is usually between a 
bridge and a culvert.  Bridges are usually chosen if the discharge is significant or if the stream to be 
crossed is large in extent.  Both types of facilities should be evaluated and a choice made based on 
performance and economics.  If the stream crossing is wide with multiple concentrations of flow, a 
multiple opening facility may be in order. 
 

Highway-Stream Crossing Analysis 

The hydraulic analysis of a highway-stream crossing for a particular flood frequency involves: 
 

 Determining the backwater associated with each alternative profile and waterway opening(s) 

 Determining the effects on flow distribution and velocities 

 Estimating scour potential 
 
The hydraulic design of a bridge over a waterway involves the following such that the risks associated 
with backwater and increased velocities are not excessive: 
 

 Establishing a location 

 Bridge length 

 Orientation 

 Roadway and bridge profiles 
 
A hydrologic and hydraulic analysis is recommended for designing all new bridges over waterways, 
bridge widening, bridge replacement, and roadway profile modifications that may adversely affect the 
floodplain, even if no structural modifications are necessary.  Typically, this should include the following: 
 

 An estimate of peak discharge (sometimes complete runoff hydrographs) 

 Existing and proposed condition water surface profiles for design and check flood conditions 

 Consideration of the potential for stream stability problems and scour potential. 
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Freeboard 

Navigational clearance and other reasons notwithstanding, the low chord elevation is defined as the sum 
of the design normal water surface elevation (high water) and a freeboard.  For on system TxDOT 
bridges, TxDOT recommends a minimum freeboard of 2 ft to allow for passage of floating debris and to 
provide a safety factor for design flood flow.  Higher freeboards may be appropriate over streams that are 
prone to heavy debris loads, such as large tree limbs, and to accommodate other clearance needs.  
Other constraints may make lower freeboards desirable, but the low chord should not impinge on the 
design high water.  Generally, for off-system bridge replacement structures, the low chord should 
approximate that of the structure to be replaced, unless the results of a risk assessment indicate a 
different structure is the most beneficial option. 
 

Roadway/Bridge Profile 

A bridge is integrated into both the stream and the roadway and must be fully compatible with both.  
Therefore, the alignment of the roadway and the bridge are the same between the ends of the bridge.  
Hydraulically, the complete bridge profile can be any part of the structure that stream flow can strike or 
impact in its movement downstream.  If the stream gets high enough to inundate the structure, then all 
parts of the roadway and the bridge become part of the complete bridge profile. 
 
For TxDOT design, the roadway must not be inundated by the design flood, but inundation by the flood 
mitigation storm is allowed.  Unless the route is an emergency escape route, it is often desirable to allow 
floods in excess of the design flood to overtop the road.  This helps minimize both the backwater and the 
required length of structure. 
 
Several vertical alignment alternatives are available for consideration, depending on site topography, 
traffic requirements, and flood damage potential.  The alternatives range from crossings that are designed 
to overtop frequently to crossings that are designed to rarely or never overtop. 
 

Crossing Profile 

The horizontal alignment of a highway at a stream crossing should be taken into consideration when 
selecting the design and location of the waterway opening as well as the crossing profile.  Every effort 
should be made to align the highway so that the crossing will be normal to the stream flow direction 
(highway centerline perpendicular to the streamline). 
 
Often, this is not possible because of the highway or stream configuration.  When a skewed structure is 
necessary, it should be ensured that substructure fixtures such as foundations, columns, piers, and bent 
caps offer minimum resistance to the stream flow. 
 
Bent caps should be oriented as near to the skew of the streamlines at flood stage as possible.  Headers 
should be skewed to minimize eddy-causing obstructions.  A relief opening may be provided to reduce 
the likelihood of trapped flow and minimize the amount of flow that would have to travel up against the 
general direction of flow along the embankment. 
 

Single Versus Multiple Openings 

For a single structure, the flow will find its way to an opening until the roadway is overtopped.  If two or 
more structures have flow area available, after accumulating a head, the flow will divide and proceed to 
the structures offering the least resistance.  The point of division is called a stagnation point. 
 
In usual practice, the TxDOT recommends that the flood discharge be forced to flow parallel to the 
highway embankment for no more than about 800 ft.  If flow distances along the embankment are greater 
than recommended, an additional relief structure or opening should be considered.  A possible alternative 
to the provision of an additional structure is a guide bank (spur dike) to control the turbulence at the 
header.  Also, natural vegetation between the toe of slope and the right-of-way line is useful in controlling 
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flow along the embankment.  Therefore, special efforts should be made to preserve any natural 
vegetation in such a situation. 
 

Factors Affecting Bridge Length 

The discussions of bridge design assume normal cross sections and lengths (perpendicular to flow at 
flood stage).  Usually one-dimensional flow is assumed, and cross sections and lengths are considered 
90° to the direction of stream flow at flood stage. 
 
If the crossing is skewed to the stream flow at flood stage, all cross sections and lengths should be 
normalized before proceeding with the bridge length design.  If the skew is severe and the floodplain is 
wide, the analysis may need to be adjusted to offset the effects of elevation changes within the same 
cross section. 
 
The following examples illustrate various factors that can cause a bridge opening to be larger than that 
required by hydraulic design. 
 

 Bank protection may be placed in a certain location due to local soil instability or a high bank. 

 Bridge costs may be cheaper than embankment costs. 

 A highway profile grade line might dictate an excessive freeboard allowance.  For sloping 
abutments, a higher freeboard will result in a longer bridge. 

 High potential for meander to migrate, or other channel instabilities may warrant a longer 
opening. 

 

3.4.2 Symbols and Definitions 

The hydraulics of bridge openings are basically the same as those of open channel flow.  Therefore, the 
symbols and definitions are essentially the same as those of in Table 3.1.  There are other definitions 
unique to bridges which are presented here.  They are defined in the TxDOT Hydraulic Design Manual. 
 

Flow Zones and Energy Losses 

Figure 3.34 shows a plan of typical cross section locations that establish three flow zones that should be 
considered when estimating the effects of bridge openings. 
 
Zone 1 represents the area between the downstream face of the bridge and a cross section downstream 
of the bridge within which expansion of flow from the bridge is expected to occur.  The distance over 
which this expansion occurs can vary depending on the flow rate and the floodplain characteristics.  No 
detailed guidance is available, but a distance equal to about four times the length of the average 
embankment constriction is reasonable for most situations.  Section 1 represents the effective channel 
flow geometry at the end of the expansion zone, which is also called the “exit” section.  Cross sections 2 
and 3 are at the toe of roadway embankment and represent the portion of unconstricted channel 
geometry that approximates the effective flow areas near the bridge opening as shown in Figure 3.35. 
 
Zone 2 represents the area under the bridge opening through which friction, turbulence, and drag losses 
are considered.  Generally, the bridge opening is obtained by superimposing the bridge geometry on 
cross sections 2 and 3. 
 
Zone 3 represents an area from the upstream face of the bridge to a distance upstream where the 
contraction of flow must occur.  A distance upstream of the bridge equal to the length of the average 
embankment constriction is a reasonable approximation of the location at which contraction begins.  
Cross section 4 represents the effective channel flow geometry where contraction begins.  This is 
sometimes referred to as the “approach” cross section. 



 iSWMTM Technical Manual Hydraulics 

Bridge Design HA-204 
April 2010, Revised 9/2014 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.34 Flow Zones at Bridges 
(TxDOT Hydraulic Design Manual) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.35 Effective Geometry for Bridge (Section 2 shown, Section 3 similar) 
(TxDOT Hydraulic Design Manual) 
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Bridge Flow Class 

The losses associated with flow through bridges depend on the hydraulic conditions of low or high flow. 
 
Low flow describes hydraulic conditions in which the water surface between Zones 1, 2, and 3 is open to 
atmospheric pressure.  That means the water surface does not impinge upon the superstructure.  (This 
condition should exist for the design frequency of all new on-system bridges.)  Low flow is divided into 
categories as described in the “Low Flow Classes” table below Type I is the most common in Texas, 
although severe constrictions compared to the flow conditions could result in Types IIA and IIB.  Type III 
is likely to be limited to steep hills and mountainous regions. 
 

Table 3.15   Low Flow Classes 

Low 
Flow 
Class 

Description 

I Subcritical flow through all Zones 

IIA Subcritical flow through Zones 1 and 3; flow through critical depth in Zone 2 

IIB Subcritical flow through Zone 3; flow through critical depth in Zone 2, hydraulic jump in Zone 1 

III Supercritical flow through all Zones 

 
High flow refers to conditions in which the water surface impinges on the bridge superstructure: 
 

 When the tailwater does not submerge the low chord of the bridge, the flow condition is 
comparable to a pressure flow sluice gate. 

 When the tailwater submerges the low chord but does not exceed the elevation of critical depth 
over the road, the flow condition is comparable to orifice flow. 

 If the tailwater overtops the roadway, neither sluice gate flow nor orifice flow is reasonable, and 
the flow is either weir flow or open flow. 

 

3.4.3 Design Recommendations 

The design of a bridge should take into account many different engineering and technical aspects at the 
bridge site and adjacent areas.  The following design recommendations should be considered for all 
bridge designs as applicable.  See the design criteria of the local jurisdiction for specific requirements. 
 

Frequency Flood 

Design discharges chosen by TxDOT for bridges vary with the functional classification and structure type.  
For major river crossings, a return period of 50 years is recommended.  Flow small bridges, the 
recommended return period is 25 years.  In all cases the check flood is for the flood mitigation storm 
return period. 
 

Freeboard 

Typical freeboard, the length between the computed design water surface and the low chord, is two feet.  
In urban settings, it may be prudent to use the flood mitigation storm fully-developed discharge to check 
the bridge design. The flood mitigation storm discharge, assuming blockage of outlet works, with 6” of 
freeboard.   Some municipalities may specify different design storms and freeboard requirements. 
 

Loss Coefficients 

The contraction and expansion of water through the bridge opening creates hydraulic losses.  These 
losses are accounted for through the use of loss coefficients.  Table 3.16 gives recommended values for 
the Contraction (Kc) and Expansion (Ke) Coefficients. 
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Table 3.16 Recommended Loss Coefficients for Bridges 

Transition Type Contraction (Kc) Expansion (Ke) 

No losses computed 0.0 0.0 

Gradual transition 0.1 0.3 

Typical bridge 0.3 0.5 

Severe transition 0.6 0.8 

 

3.4.4 Design Procedures 

The following is a general bridge hydraulic design procedure. 
 

1. Determine the most efficient alignment of proposed roadway, attempting to minimize skew at the 
proposed stream crossing. 

2. Determine design discharge from hydrologic studies or available data (Municipality, Federal 
Emergency Management Agency (FEMA), US Army Corp of Engineers (USACE), TxDOT, or 
similar sources). 

3. If available, obtain effective FEMA hydraulic backwater model.  It is assumed that if a bridge is 
required instead of a culvert, the drainage area would exceed one square mile and could already 
be included in a FEMA study.  If an effective FEMA model or other model is not available, a basic 
hydrologic model and backwater analysis for the stream must be prepared.  The HEC-RAS 
computer model is routinely used to compute backwater water surface profiles. 

4. Using USACE or FEMA guidelines, compute or duplicate an existing conditions water surface 
profile for the design storm(s).  Compute a profile for the fully-developed watershed to use as a 
baseline for design of a new bridge/roadway crossing. 

5. Use the design discharge to compute an approximate opening that will be needed to pass the 
design storm (for preliminary sizing, use a normal-depth design procedure, or simply estimate a 
required trapezoidal opening. 

6. Prepare a bridge crossing data set in the hydraulic model to reflect the preliminary design 
opening, which includes the required freeboard and any channelization upstream or downstream 
to transition the floodwaters through the proposed structure. 

7. Compute the proposed bridge flood profile and design parameters (velocities, flow distribution, 
energy grade, etc.).  Review for criteria on velocities and freeboard, and revise model as needed 
to accommodate design flows. 

8. Review the velocities and determine erosion control requirements downstream, through the 
structure, and upstream. 

9. Finalize the design size and erosion control features, based on comparing the proposed model 
with the existing conditions profiles, impacts on other properties, FEMA guidelines, and local 
criteria. 

10. Exceptions/Other Issues 
A. Conditional Letter of Map Amendment (CLOMR) may be needed for new crossings of 

streams studied by FEMA. 
B. If applicable, coordinate with USACE Regulatory Permit requirements. 
C. Evaluate the project with respect to iSWM policy regarding downstream impacts. 
D. Design should be for fully developed watershed conditions.  If the available discharges 

are from FEMA existing conditions hydrology, the following options are available: (1) 
obtain new hydrology, (2) extrapolate fully-developed from existing data, or (3) variance 
from the local jurisdiction on design discharges 

E. Freeboard criteria may require an unusually expensive bridge or impracticable roadway 
elevation.  A reasonable variance in criteria from the local jurisdiction may be available.  
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4.0 Energy Dissipation 

4.1 Overview 

4.1.1 Introduction 

The outlets of pipes and lined channels are points of critical erosion potential.  Stormwater transported 
through man-made conveyance systems at design capacity generally reaches a velocity that exceeds the 
capacity of the receiving channel or area to resist erosion.  To prevent scour at stormwater outlets, 
protect the outlet structure and minimize the potential for downstream erosion, a flow transition structure 
is needed to absorb the initial impact of flow and reduce the speed of the flow to a non-erosive velocity.   
 
Energy dissipators are engineered devices such as rip-rap aprons or concrete baffles placed at the outlet 
of stormwater conveyances for the purpose of reducing the velocity, energy and turbulence of the 
discharged flow.  
 

4.1.2 General Criteria 

Erosion problems at culvert, pipe and engineered channel outlets are common.  Determination of the flow 
conditions, scour potential, and channel erosion resistance shall be standard procedure for all designs. 
 
Energy dissipators shall be employed whenever the velocity of flows leaving a stormwater management 

facility exceeds the erosion velocity of the downstream area channel system.  
 
Energy dissipator designs will vary based on discharge specifics and tailwater conditions. 
 
Outlet structures should provide uniform redistribution or spreading of the flow without excessive 
separation and turbulence.   
 

4.1.3 Recommended Energy Dissipators 

For many designs, the following outlet protection devices and energy dissipators provide sufficient 
protection at a reasonable cost: 

 Riprap apron 

 Riprap outlet basins 

 Baffled outlets 

 Grade Control Structures 
 
This section focuses on the design on these measures.  The reader is referred to the Federal Highway 
Administration Hydraulic Engineering Circular No. 14 entitled, Hydraulic Design of Energy Dissipators for 
Culverts and Channels, for the design procedures of other energy dissipators. 
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4.2 Symbols and Definitions 

To provide consistency within this section as well as throughout this Manual, the symbols listed in Table 
4.1 will be used.  These symbols were selected because of their wide use.  In some cases, the same 
symbol is used in existing publications for more than one definition.  Where this occurs in this section, the 
symbol will be defined where it occurs in the text or equations. 
 

Table 4.1  Symbols and Definitions 

Symbol Definition Units 

A Cross-sectional area ft2 

D Height of box culvert ft 

d50 Size of riprap ft 

dw Culvert width ft 

Fr Froude Number - 

g Acceleration of gravity ft/s2 

hs Depth of dissipator pool ft 

L Length ft 

La Riprap apron length ft 

LB Overall length of basin ft 

Ls Length of dissipator pool ft 

Pl Plasticity index - 

Q Rate of discharge cfs 

Sv Saturated shear strength lbs/in2 

t Time of scour min. 

tc Critical tractive shear stress lbs/in2 

TW Tailwater depth ft 

VL Velocity L feet from brink ft/s 

Vo Normal velocity at brink ft/s 

Vo Outlet mean velocity ft/s 

Vs Volume of dissipator pool ft2 

Wo Diameter or width of culvert ft 

Ws Width of dissipator pool ft 

ye Hydraulic depth at brink ft 

yo Normal flow depth at brink ft 
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4.3 Design Guidelines 

If outlet protection is required, choose an appropriate type.  Suggested outlet protection facilities and 
applicable flow conditions (based on Froude number and dissipation velocity) are described below:   
 
a. Riprap aprons may be used when the outlet Froude number (Fr) is less than or equal to 2.5.  In 

general, riprap aprons prove economical for transitions from culverts to overland sheet flow at 
terminal outlets, but may also be used for transitions from culvert sections to stable channel sections.  
Stability of the surface at the termination of the apron should be considered. 

 
b. Riprap outlet basins may also be used when the outlet Fr is less than or equal to 2.5.  They are 

generally used for transitions from culverts to stable channels.  Since riprap outlet basins function by 
creating a hydraulic jump to dissipate energy, performance is impacted by tailwater conditions. 

 
c. Baffled outlets have been used with outlet velocities up to 50 feet per second. Practical application 

typically requires an outlet Fr between 1 and 9.  Baffled outlets may be used at both terminal outlet 
and channel outlet transitions.  They function by dissipating energy through impact and turbulence 
and are not significantly affected by tailwater conditions. 

 
When outlet protection facilities are selected, appropriate design flow conditions and site-specific factors 
affecting erosion and scour potential, construction cost, and long-term durability should be considered. 
 
If outlet protection is not provided, energy dissipation will occur through formation of a local scourhole.  A 
cutoff wall will be needed at the discharge outlet to prevent structural undermining.  The wall depth should 
be slightly greater than the computed scourhole depth, hs.  The scourhole should then be stabilized.  If the 
scourhole is of such size that it will present maintenance, safety, or aesthetic problems, other outlet 
protection will be needed.  
 
Evaluate the downstream channel stability and provide appropriate erosion protection if channel 
degradation is expected to occur.  Figure 4.1 provides the riprap size recommended for use downstream 
of energy dissipators.  

 
Figure 4.1 Riprap Size for Use Downstream of Energy Dissipator 

(Source:  Searcy, 1967) 



 iSWMTM Technical Manual Hydraulics 

Energy Dissipation HA-212 
April 2010, Revised 9/2014 

4.4 Riprap Aprons  

4.4.1 Description 

A riprap-lined apron is a commonly used practice for energy dissipation because of its relatively low cost 
and ease of installation.  A flat riprap apron can be used to prevent erosion at the transition from a pipe or 
box culvert outlet to a natural channel.  Protection is provided primarily by having sufficient length and 
flare to dissipate energy by expanding the flow.  Riprap aprons are appropriate when the culvert outlet Fr 
is less than or equal to 2.5. 
 

4.4.2 Design Procedure 

The procedure presented in this section is taken from USDA, SCS (1975).  Two sets of curves, one for 
minimum and one for maximum tailwater conditions, are used to determine the apron size and the 
median riprap diameter, d50.  If tailwater conditions are unknown, or if both minimum and maximum 
conditions may occur, the apron should be designed to meet criteria for both.  Although the design curves 
are based on round pipes flowing full, they can be used for partially full pipes and box culverts.  The 
design procedure consists of the following steps: 
 
If possible, determine tailwater conditions for the channel.  If tailwater is less than one-half the discharge 
flow depth (pipe diameter if flowing full), minimum tailwater conditions exist and the curves in Figure 4.2 
apply.  Otherwise, maximum tailwater conditions exist and the curves in Figure 4.3 should be used. 
 
Determine the correct apron length and median riprap diameter, d50, using the appropriate curves from 
Figures 4.2 and 4.3.  If tailwater conditions are uncertain, find the values for both minimum and maximum 
conditions and size the apron as shown in Figure 4.4. 
 
a. For pipes flowing full: 

Use the depth of flow, d, which equals the pipe diameter, in feet, and design discharge, in cfs, to 
obtain the apron length, La, and median riprap diameter, d50, from the appropriate curves. 
 

b. For pipes flowing partially full: 

Use the depth of flow, d, in feet, and velocity, v, in ft/s.  On the lower portion of the appropriate figure, 
find the intersection of the d and v curves, and then find the riprap median diameter, d50, from the 
scale on the right.  From the lower d and v intersection point, move vertically to the upper curves until 
intersecting the curve for the correct flow depth, d.  Find the minimum apron length, La, from the scale 

on the left. 
 
c. For box culverts: 

Use the depth of flow, d, in feet, and velocity, v, in feet/second.  On the lower portion of the 
appropriate figure, find the intersection of the d and v curves, and then find the riprap median 
diameter, d50, from the scale on the right.  From the lower d and v intersection point, move vertically 
to the upper curve until intersecting the curve equal to the flow depth, d.  Find the minimum apron 
length, La, using the scale on the left. 

 
If tailwater conditions are uncertain, the median riprap diameter should be the larger of the values for 
minimum and maximum conditions.  The dimensions of the apron will be as shown in Figure 4.4.  This will 
provide protection under either of the tailwater conditions. 
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Figure 4.2 Design of Riprap Apron under Minimum Tailwater Conditions 

(Source:  USDA, SCS, 1975) 

 
 
  



 iSWMTM Technical Manual Hydraulics 

Energy Dissipation HA-214 
April 2010, Revised 9/2014 

 

 
 

Figure 4.3 Design of Riprap Apron under Maximum Tailwater Conditions 
(Source:  USDA, SCS, 1975) 
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Figure 4.4 Riprap Apron 
(Source:  Manual for Erosion and Sediment Control in Georgia, 1996) 
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4.4.3 Design Considerations 
The following items should be considered during riprap apron design: 

 
The maximum stone diameter should be 1.5 times the median riprap diameter. 
dmax = 1.5 x d50 , d50 = the median stone size in a well-graded riprap  apron. 
 
The riprap thickness should be 1.5 times the maximum stone diameter or 6 inches, whichever is greater.  
Apron thickness = 1.5 x dmax 
(Apron thickness may be reduced to 1.5 x d50 when an appropriate filter fabric is used under the apron.) 

 
The apron width at the discharge outlet should be at least equal to the pipe diameter or culvert width, dw.  
Riprap should extend up both sides of the apron and around the end of the pipe or culvert at the 
discharge outlet at a maximum slope of 2:1 and a height not less than the pipe diameter or culvert height, 
and should taper to the flat surface at the end of the apron. 
 
If there is a well-defined channel, the apron length should be extended as necessary so the downstream 
apron width is equal to the channel width.  The sidewalls of the channel should not be steeper than 2:1. 
 
If the ground slope downstream of the apron is steep, channel erosion may occur.  The apron should be 
extended as necessary until the slope is gentle enough to prevent further erosion. 
 
The potential for vandalism should be considered if the rock is easy to carry.  If vandalism is a possibility, 
the rock size must be increased or the rocks held in place using concrete or grout. 
 

4.4.4 Example Designs 

Example 1  Riprap Apron Design for Minimum Tailwater Conditions 
 
A flow of 280 cfs discharges from a 66-in pipe with a tailwater of 2 ft above the pipe invert.  Find the 
required design dimensions for a riprap apron. 
 
Minimum tailwater conditions = 0.5 do, do = 66 in = 5.5 ft; therefore, 0.5 do = 2.75 ft. 
 
Since TW = 2 ft is less than 2.75 ft, use Figure 4.2 for minimum tailwater conditions. 
 
By Figure 4.2, the apron length, La, and median stone size, d50, are 38 ft and 1.2 ft, respectively. 
 
The downstream apron width equals the apron length plus the pipe diameter:   

 W = d + La = 5.5 + 38 = 43.5 ft 
 
Maximum riprap diameter is 1.5 times the median stone size:   

 1.5 (d50) = 1.5 (1.2) = 1.8 ft 
 
Riprap depth = 1.5 (dmax) = 1.5 (1.8) = 2.7 ft. 
 
Example 2  Riprap Apron Design for Maximum Tailwater Conditions 
 
A concrete box culvert 5.5 ft high and 10 ft wide conveys a flow of 600 cfs at a depth of 5.0 ft.  Tailwater 
depth is 5.0 ft above the culvert outlet invert.  Find the design dimensions for a riprap apron. 
 
Minimum tailwater conditions = 0.5 do, do = 0.5 (5.0) = 2.5 ft. 
 
Since TW = 5.0 ft is greater than 2.5 ft, use Figure 4.3 for maximum tailwater conditions. 



 iSWMTM Technical Manual Hydraulics 

Energy Dissipation HA-217 
April 2010, Revised 9/2014 

 v = Q/A = 600/[(5)(10)]  = 12 ft/s 
 
On Figure 4.3, at the intersection of the curve, do = 60 in and v = 12 ft/s, d50 = 0.4 ft.  Reading up to the 
intersection with d = 60 in, find La = 40 ft. 
 
Apron width downstream = dw + 0.4 La = 10 + 0.4 (40) = 26 ft. 
 
Maximum stone diameter = 1.5 d50 = 1.5 (0.4) = 0.6 ft. 
 
Riprap depth = 1.5 dmax = 1.5 (0.6) = 0.9 ft. 
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4.5 Riprap Basins 

4.5.1 Description 

Another method to reduce the exit velocities from stormwater outlets is through the use of a riprap basin.  
A riprap outlet basin is a preshaped scourhole lined with riprap that functions as an energy dissipator by 
forming a hydraulic jump.  
 

4.5.2 Basin Features 

General details of the basin recommended in this section are shown in Figure 4.5.  Principal features of 
the basin are: 
 
The basin is preshaped and lined with riprap of median size (d50). 
 
The floor of the riprap basin is constructed at an elevation of hs below the culvert invert.  The dimension hs 
is the approximate depth of scour that would occur in a thick pad of riprap of size d50 if subjected to 
design discharge.  The ratio of hs to d50 of the material should be between 2 and 4.  
 
The length of the energy dissipating pool is 10 x hs or 3 x Wo, whichever is larger.  The overall length of 
the basin is 15 x hs or 4 x Wo, whichever is larger.  
 

4.5.3 Design Procedure 

The following procedure should be used for the design of riprap basins.  
 
Estimate the flow properties at the brink (outlet) of the culvert.  Establish the outlet invert elevation such 
that TW/yo < 0.75 for the design discharge.  
 
For subcritical flow conditions (culvert set on mild or horizontal slope) use Figure 4.6 or Figure 4.7 to 
obtain yo/D, then obtain Vo by dividing Q by the wetted area associated with yo.  D is the height of a box 
culvert.  If the culvert is on a steep slope, Vo will be the normal velocity obtained by using the Manning 
equation for appropriate slope, section, and discharge.  
 
For streambank protection, compute the Froude number for brink conditions with ye = (A/2)1.5.  Select 
d50/ye appropriate for locally available riprap (usually the most satisfactory results will be obtained if 0.25 < 
d50/ye < 0.45).  Obtain hs/ye from Figure 4.8, and check to see that 2 < hs/d50 < 4.  Recycle computations if 
hs/d50 falls out of this range. 
 
Size basin as shown in Figure 4.5. 
 
Where allowable dissipator exit velocity is specified: 
 
a. Determine the average normal flow depth in the natural channel for the design discharge.  

 
b. Extend the length of the energy basin (if necessary) so the width of the energy basin at section A-A, 

Figure 4.5, times the average normal flow depth in the natural channel is approximately equal to the 
design discharge divided by the specified exit velocity.  

 
In the exit region of the basin, the walls and apron of the basin should be warped (or transitioned) so the 
cross section of the basin at the exit conforms to the cross section of the natural channel.  Abrupt 
transition of surfaces should be avoided to minimize separation zones and resultant eddies.  
 
If high tailwater is a possibility and erosion protection is necessary for the downstream channel, the 
following design procedure is suggested:  
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 Design a conventional basin for low tailwater conditions in accordance with the instructions above.   

 Estimate centerline velocity at a series of downstream cross sections using the information shown in 
Figure 4.9.   

 Shape downstream channel and size riprap using Figure 4.1 and the stream velocities obtained 

above.   
 
Material, construction techniques, and design details for riprap should be in accordance with 
specifications in the Federal Highway publication HEC No. 11 entitled Use of Riprap for Bank Protection. 
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Figure 4.5 Details of Riprap Outlet Basin 

(Source:  HEC-14, 1983) 
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Figure 4.6 Dimensionless Rating Curves for the Outlets of Rectangular Culverts on 
Horizontal and Mild Slopes 

(Source:  USDOT, FHWA, HEC-14, 1983) 
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Figure 4.7 Dimensionless Rating Curves for the Outlets of Circular Culverts on 
Horizontal and Mild Slopes 

(Source:  USDOT, FHWA, HEC-14, 1983) 
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Figure 4.8 Relative Depth of Scour Hole Versus Froude Number at Brink of Culvert with 
Relative Size of Riprap as a Third Variable 

(Source:  USDOT, FHWA, HEC-14, 1983) 
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4.5.4 Design Considerations 
Riprap basin design should include consideration of the following: 
 
The dimensions of a scourhole in a basin constructed with angular rock can be approximately the same 
as the dimensions of a scourhole in a basin constructed of rounded material when rock size and other 
variables are similar.  
 
When the ratio of tailwater depth to brink depth, TW/yo, is less than 0.75 and the ratio of scour depth to 
size of riprap, hs/d50, is greater than 2.0, the scourhole should function very efficiently as an energy 
dissipator.  The concentrated flow at the culvert brink plunges into the hole, a jump forms against the 
downstream extremity of the scourhole, and flow is generally well dispersed leaving the basin. 
 
The mound of material formed on the bed downstream of the scourhole contributes to the dissipation of 
energy and reduces the size of the scourhole; that is, if the mound from a stable scoured basin is 
removed and the basin is again subjected to design flow, the scourhole will enlarge. 
 
For high tailwater basins (TW/yo greater than 0.75), the high velocity core of water emerging from the 
culvert retains its jet-like character as it passes through the basin and diffuses similarly to a concentrated 
jet diffusing in a large body of water.  As a result, the scourhole is much shallower and generally longer.  
Consequently, riprap may be required for the channel downstream of the rock-lined basin.  
 
It should be recognized that there is a potential for limited degradation to the floor of the dissipator pool 
for rare event discharges.  With the protection afforded by the 2(d50) thickness of riprap, the heavy layer 
of riprap adjacent to the roadway prism, and the apron riprap in the downstream portion of the basin, such 
damage should be superficial.  
 
See Standards in the in FHWA HEC No. 11 for details on riprap materials and use of filter fabric.  
 
Stability of the surface at the outlet of a basin should be considered using the methods for open channel 
flow as outlined in Section 3.2. 
 

4.5.5 Example Designs 

Following are some example problems to illustrate the design procedures outlined. 

 
Example 1 

 
Given: Box culvert - 8 ft by 6 ft Design Discharge Q = 800 cfs 
 Supercritical flow in culvert Normal flow depth = brink depth 
 Yo = 4 ft Tailwater depth TW = 2.8 ft 
 
Find:  Riprap basin dimensions for these conditions 
 
Solution: Definition of terms in Steps 1 through 5 can be found in Figures 4.5 and 4.8. 
 

yo = ye for rectangular section; therefore, with yo given as 4 ft, ye = 4 ft.  
 
Vo = Q/A = 800/(4 x 8) = 25 ft/s 
 
Froude Number = Fr = V/(g x ye)0.5    (g = 32.2 ft/s2)    

 Fr = 25/(32.2 x 4)0.5 = 2.20 < 2.5 O.K. 
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Figure 4.9 Distribution of Centerline Velocity for Flow from Submerged Outlets to Be 
Used for Predicting Channel Velocities Downstream from Culvert Outlet Where High 

Tailwater Prevails 

(Source:  USDOT, FHWA, HEC-14, 1983) 

 
TW/ye = 2.8/4.0 = 0.7   Therefore, TW/ye < 0.75  OK 
 
Try d50/ye = 0.45, d50 = 0.45 x 4 = 1.80 ft 
From Figure 4.8, hs/ye = 1.6, hs = 4 x 1.6 = 6.4 ft 
hs/d50 = 6.4/1.8 = 3.6 ft, 2 < hs/d50 < 4   OK 
  
Ls = 10 x hs = 10 x 6.4 = 64 ft  (Ls = length of energy dissipator pool) 
Ls min = 3 x Wo = 3 x 8 = 24 ft; therefore, use Ls = 64 ft 
 
LB = 15 x hs= 15 x 6.4 = 96 ft  (LB = overall length of riprap basin) 
LB  min = 4 x Wo = 4 x 8 = 32 ft; therefore, use LB = 96 ft 
 
Thickness of riprap: On the approach = 3 x d50 = 3 x 1.8 = 5.4 ft 

 Remainder = 2 x d50 = 2 x 1.8 = 3.6 ft 
 Other basin dimensions designed according to details shown in Figure 4.5. 

 
Example 2 
 
Given: Same design data as Example 1 except: 

 Tailwater depth TW = 4.2 ft 
 Downstream channel can tolerate only 7 ft/s discharge 
 
Find: Riprap basin dimensions for these conditions 
 
Solutions: Note -- High tailwater depth, TW/yo = 4.2/4 = 1.05 > 0.75 
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From Example 1: d50 = 1.8 ft, hs = 6.4 ft, Ls = 64 ft, LB = 96 ft. 

 
Design riprap for downstream channel.  Use Figure 4.9 for estimating average velocity along the 
channel.  Compute equivalent circular diameter De for brink area from:  
 A = 3.14De

2/4 = yo x Wo = 4 x 8 = 32 ft2 
 De = ((32 x 4)/3.14)0.5 = 6.4 ft 
 Vo = 25 ft/s (From Example 1) 
 
Set up the following table: 

     Rock Size 
 L/De L (ft) VL/Vo v1 (ft/s) d50 (ft) 

 (Assume) (Compute) (Fig. 9) (Fig. 1) De = Wo 
 
 10 64 0.59 14.7 1.4 
 15* 96 0.37 9.0 0.6 
 20 128 0.30 7.5 0.4 
 21 135 0.28 7.0 0.4 
 
*L/Wo is on a logarithmic scale so interpolations must be done logarithmically. 
 
Riprap should be at least the size shown but can be larger.  As a practical consideration, the channel 
can be lined with the same size rock used for the basin.  Protection must extend at least 135 ft 
downstream from the culvert brink.  Channel should be shaped and riprap should be installed in 

accordance with details shown in the HEC No. 11 publication.  
 
Example 3 
 

Given: 6-ft diameter CMC 
 Design discharge Q = 135 cfs 
 Slope channel So = 0.004 
 Manning's n = 0.024 
 Normal depth in pipe for Q = 135 cfs is 4.5 ft 
 Normal velocity is 5.9 ft/s 
 Flow is subcritical 
 Tailwater depth TW = 2.0 ft 
 

Find: Riprap basin dimensions for these conditions. 
 

Solution: 
 

Determine yo and Vo  
Q/D2.5= 135/62.5= 1.53 
TW/D = 2.0/6 = 0.33 
From Figure 4.7, yo/D = 0.45  
yo = .45 x 6 = 2.7 ft 
TW/yo = 2.0/2.7 = 0.74   TW/yo < 0.75 O.K. 
 
Determine Brink Area (A) for yo/D = 0.45  
 
From Uniform Flow in Circular Sections Table (from Table 3.7) 
For yo/D = d/D = 0.45 
A/D2 = 0.3428; therefore, A = 0.3428 x 62 = 12.3 ft2 

Vo = Q/A = 135/12.3 = 11.0 ft/s 
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For Froude number calculations at brink conditions,  
ye = (A/2)1/2 = (12.3/2)1/2 = 2.48 ft 
 
Froude number = Fr = Vo/(32.2 x ye)1/2 = 11/(32.2 x 2.48)1/2 = 1.23 < 2.5   OK 
 
For most satisfactory results,  0.25 < d50/ye < 0.45 
Try d50/ye = 0.25 
d50 = 0.25 x 2.48 = 0.62 ft 
From Figure 4.8, hs/ye = 0.7; therefore, hs = 0.7 x 2.48 = 1.74 ft 
 
Uniform Flow in Circular Sections Flowing Partly Full (From Section 3.2.4) 
Check: hs/d50 = 1.74/0.62 = 2.8, 2 < hs/d50 < 4    OK 
 
Ls = 10 x hs = 10 x 1.74 = 17.4 ft or Ls = 3 x Wo = 3 x 6 = 18 ft;  
therefore, use Ls = 17.4 ft 
 
LB = 15 x hs = 15 x 1.74 = 26.1 ft or LB = 4 x Wo = 4 x 6 = 24 ft;  
therefore, use LB = 26.1 ft 
 
d50 = 0.62 ft or use d50 = 8 in 

 
Other basin dimensions should be designed in accordance with details shown on Figure 4.5.  Figure 4.10 
is provided as a convenient form to organize and present the results of riprap basin designs. 
 
Note:  When using the design procedure outlined in this section, it is recognized that there is some 
chance of limited degradation of the floor of the dissipator pool for rare event discharges.  With the 
protection afforded by the 3 x d50 thickness of riprap on the approach and the 2 x d50 thickness of riprap 
on the basin floor and the apron in the downstream portion of the basin, the damage should be 
superficial. 
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Figure 4.10 Riprap Basin Design Form 

(Source:  USDOT, FHWA, HEC-14, 1983) 
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4.6 Baffled Outlets 
4.6.1 Description 

The baffled outlet (also known as the Impact Basin - USBR Type VI) is a boxlike structure with a vertical 
hanging baffle and an end sill, as shown in Figure 4.11.  Energy is dissipated primarily through the impact 
of the water striking the baffle and, to a lesser extent, through the resulting turbulence.  This type of outlet 
protection has been used with outlet velocities up to 50 feet per second and with Froude numbers from 1 
to 9.  Tailwater depth is not required for adequate energy dissipation, but a tailwater will help smooth the 
outlet flow. 
 

4.6.2 Design Procedure 

The following design procedure is based on physical modeling studies summarized from the U.S. 
Department of Interior (1978).  The dimensions of a baffled outlet as shown in Figure 4.11 should be 
calculated as follows: 

 
Determine input parameters, including: 

h = Energy head to be dissipated, in ft (can be approximated as the difference between channel 
invert elevations at the inlet and outlet) 

Q = Design discharge (cfs) 

v = Theoretical velocity (ft/s = 2gh) 

A = Q/v = Flow area (ft2) 

d = A0.5= Representative flow depth entering the basin (ft) assumes square jet 

Fr = v/(gd)0.5 = Froude number, dimensionless 

g = Acceleration of gravity (32.2 ft/s) 

 
Calculate the minimum basin width, W, in ft, using the following equation. 

 

 W/d = 2.88Fr0.566  or W = 2.88dFr0.566 (4.1) 

Where: 

 W = minimum basin width (ft) 

 d = depth of incoming flow (ft) 

 Fr = v/(gd)0.5 = Froude number, dimensionless 
 
The limits of the W/d ratio are from 3 to 10, which corresponds to Froude numbers 1  
and 9.  If the basin is much wider than W, flow will pass under the baffle and energy dissipation will 
not be effective. 

 
Calculate the other basin dimensions as shown in Figure 4.11, as a function of W.  Construction 
drawings for selected widths are available from the U.S. Department of the Interior (1978). 
 
Calculate required protection for the transition from the baffled outlet to the natural channel based on 
the outlet width.  A riprap apron should be added of width W, length W (or a 5-foot minimum), and 
depth f (W/6).  The side slopes should be 1.5:1, and median rock diameter should be at least W/20. 
 
Calculate the baffled outlet invert elevation based on expected tailwater.  The maximum distance 
between expected tailwater elevation and the invert should be b + f or some flow will go over the 
baffle with no energy dissipation.  If the tailwater is known and fairly controlled, the baffled outlet 
invert should be a distance, b/2 + f, below the calculated tailwater elevation.  If tailwater is 
uncontrolled, the baffled outlet invert should be a distance, f, below the downstream channel invert. 
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Calculate the outlet pipe diameter entering the basin assuming a velocity of 12 ft/s flowing full. 

Figure 4.11 Schematic of Baffled Outlet 

(Source:  U.S. Dept. of the Interior, 1978) 

 
If the entrance pipe slopes steeply downward, the outlet pipe should be turned horizontal for at least 3 
ft before entering the baffled outlet. 
 
If it is possible that both the upstream and downstream ends of the pipe will be submerged, provide 
an air vent approximately 1/6 the pipe diameter near the upstream end to prevent pressure 
fluctuations and possible surging flow conditions. 
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4.6.3 Example Design 
A cross-drainage pipe structure has a design flow rate of 150 cfs, a head, h, of 15 ft from invert of pipe, 
and a tailwater depth, TW, of 3 ft above ground surface.  Find the baffled outlet basin dimensions and 
inlet pipe requirements. 

 
1. Compute the theoretical velocity from  

v = (2gh)0.5 = [2(32.2 ft/sec2)(15 ft)]0.5 = 31.1 ft/s 
This is less than 50 ft/s, so a baffled outlet is suitable. 

 
2. Determine the flow area using the theoretical velocity as follows: 

A = Q/v = 150 cfs/31.1 ft/sec = 4.8 ft2 
 

3. Compute the flow depth using the area from Step 2. 
d = (A)0.5 = (4.8 ft2)0.5 = 2.12 ft 
 

4. Compute the Froude number using the results from Steps 1 and 3. 
Fr = v/(gd)0.5 = 31.1 ft/sec/[(32.2 ft/sec2)(2.12 ft)]0.5 = 3.8 
 

5. Determine the basin width using Equation 4.1 with the Froude number from Step 4. 
W = 2.88 dFr0.566 = 2.88 (2.12) (3.8)0.566 = 13.0 ft (minimum) 
Use 13 ft as the design width. 
 

6. Compute the remaining basin dimensions (as shown in Figure 4.11): 
 L = 4/3 (W) = 17.3 ft, use L = 17 ft, 4 in 

 f = 1/6 (W) = 2.17 ft, use f = 2 ft, 2 in 

 e = 1/12 (W) = 1.08 ft, use e = 1 ft, 1 in 

 H = 3/4 (W) = 9.75 ft, use H = 9 ft, 9 in 

 a = 1/2 (W) = 6.5 ft, use a = 6 ft, 6 in 

 b = 3/8 (W) = 4.88 ft, use b = 4 ft, 11 in 

 c = 1/2 (W) = 6.5 ft, use c = 6 ft, 6 in 
 
Baffle opening dimensions would be calculated as shown in Figure 4.11. 
 

7. Basin invert should be at b/2 + f below tailwater, or  
(4 ft, 11 in)/2 + 2 ft, 2 in = 4.73 ft 
Use 4 ft 8 in; therefore, invert should be 2 ft, 8 in below ground surface. 
 

8. The riprap transition from the baffled outlet to the natural channel should be 13 ft long by 13 ft wide by 
2 ft, 2 in deep (W x W x f).  Median rock diameter should be of diameter W/20, or about 8 in. 
 

9. Inlet pipe diameter should be sized for an inlet velocity of about 12 ft/s. 
(3.14d)2 /4 = Q/v; d = [(4Q)/3.14v)]0.5 = [(4(150 cfs)/3.14(12 ft/sec)]0.5 = 3.99 ft 
Use 48-in pipe.  If a vent is required, it should be about 1/6 of the pipe diameter or 8 in. 
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4.7 Grade Control Structures 
When channels are relocated through non-stable soils and stream gradients are increased, the stream 
bottom may degrade or dig itself deeper.  This can cause bank instability, increased upstream scouring, 
and sloughing of natural slopes.  The U.S. Soil Conservation Services (SCS) requires that streambed 
stability be maintained in any of its stream projects.  This can be accomplished by grade stabilization 
structures; in essence a series of low-head weirs. 
 
If designed and constructed with ecological values in mind, these structures can double as habitat 
enhancement devices.  If improperly planned however, they can atually degrade habitat values.  The 
most productive method of installing these structures is to use low weirs that pool water just a short 
distance (approximately 100 feet) upstream.  A plunge pool will form just below the structures, and a riffle 
area should develop below this pool.  The next structure should be located downstream a sufficient 
distance to avoid impounding the riffle area below the pool at the base of the upstream weir. 
 
Specific construction requirements and techniques can be obtained from the SCS or other agencies upon 
request.  The intent of this general discussion of grade stabilization structures is to promote consideration 
of such measures early in the planning process. 
 
Source: US Army Corp of Engineers, Nashville District, “Mitigating the Impacts of Stream Alterations”, 
unkn. 


